首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Fluorogenic substrates based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase and glycosidase activities. One disadvantage of these substrates, however, is that maximum fluorescence of the reaction product requires an alkaline pH, since 4-MU has a pK(a) approximately 8. In an initial screening of five phosphatase substrates based on fluorinated derivatives of 4-MU, all with pK(a) values lower than that of 4-MU, we found that one substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), was much improved for the detection of acid phosphatase activity. When measured at the preferred acid phosphatase reaction pH (5.0), DiFMUP yielded fluorescence signals that were more than 10-fold higher than those of 4-methylumbelliferyl phosphate (MUP). DiFMUP was also superior to MUP for the detection of protein phosphatase 1 activity at pH 7 and was just as sensitive as MUP for the detection of alkaline phosphatase activity at pH 10. A beta-galactosidase substrate was also prepared based on 6, 8-difluoro-4-methylumbelliferone. This substrate, 6, 8-difluoro-4-methylumbelliferyl beta-d-galactopyranoside (DiFMUG), was found to be considerably more sensitive than the commonly used substrate 4-methylumbelliferyl beta-d-galactopyranoside (MUG), for the detection of beta-galactosidase activity at pH 7. DiFMUP and DiFMUG should have great utility for the continuous assay of phosphatase and beta-galactosidase activity, respectively, at neutral and acid pH.  相似文献   

2.
Activity assays for tyrosine phosphatases are based on the hydrolysis of a arylphosphate moiety from a synthetic substrate yielding a spectroscopically active product. Many different substrates can be used for these assays with p-nitrophenyl phosphate (pNPP), fluorescein diphosphate (FDP), and 6,8-difluoro-4-methylumbellyferyl phosphate (DiFMUP) being the most efficient and versatile. Equally, larger molecules such as phosphotyrosyl peptides can also be used to mimic more natural substrates. Activity assays include the determinations of the rate of dephosphorylation and calculations of kinetic constants such as k(cat) and K(M). These assays are useful to identify and characterize tyrosine phosphatases and are commonly used to evaluate the efficiency of inhibitors.  相似文献   

3.
Alkaline phosphatase (ALP) activity increases dramatically during osteoblast maturation, a phenomenon that is related to calcification of teeth and bone. Although the relation between ALP and calcification is widely known, there is a paucity of date relating ALP and osteoclast formation. Very recently, we showed that osteoblast maturation suppresses osteoclast formation. However, the relation between osteoblast maturation and osteoclastogenesis remains unclear. In the present study, we examined the effect of extracellular phosphate on osteoclastogenesis. As osteoblasts matured, osteoclast formation decreased, and ALP activity and inorganic phosphate in extracellular matrix increased. Inorganic phosphate in extracellular matrix and extracellular phosphate was suppressed osteoclast formation. These results suggest that phosphate released by ALP may be related not only to calcification but also to suppression of osteoclastogenesis.  相似文献   

4.
Human bone marrow mesenchymal stem cells (hBMSCs) are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP) activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions). The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient''s own cell images to predict a new patient''s cellular potential. The prediction accuracy was found to be greatly enhanced by incorporation of patients'' own cell features in the modeling, indicating the practical strategy for clinical usage. Consequently, our results provide strong evidence for the feasibility of using a quantitative time series of phase-contrast cellular morphology for non-invasive cell quality prediction in regenerative medicine.  相似文献   

5.
The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells.  相似文献   

6.
Purmorphamine is a novel small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, but there has been no evaluation of its effect on human cells to date. The aim of this study was to investigate the induction of osteogenic activity by purmorphamine in human osteoblasts differentiated from bone marrow mesenchymal cells. Cells were cultured in 24-well plates at a density of 2x10(4)/well in medium containing 1, 2 or 3 microM purmorphamine, or vehicle. At 7, 14 and 21 days, cell proliferation, viability, and alkaline phosphatase (ALP) activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Purmorphamine did not affect cell proliferation or viability, but increased ALP activity and bone-like nodule formation. These results indicate that events related to osteoblast differentiation, including increased ALP activity and bone-like nodule formation, are enhanced by purmorphamine.  相似文献   

7.
Protein tyrosine phosphatases (PTPs) play key roles in regulating tyrosine phosphorylation levels in cells. Since the discovery of PTP1B as a major drug target for diabetes and obesity, PTPs have emerged as a new and promising class of signaling targets for drug development in a variety of therapeutic areas. The routine use of generic substrate 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) in our hands led to the discovery of very similar and often not very selective molecules. Therefore, to increase the chances to discover novel chemical scaffolds, a side-by-side comparison between the DiFMUP assay and a chip-based mobility shift assay with a specific phosphopeptide was performed, on 1 PTP, using a focused set of compounds. Assay robustness and sensitivity were comparable for both the DiFMUP and mobility shift assays. The off-chip mobility shift assay required a longer development time because of identification, synthesis, and characterization of a specific peptide, and its cost per point was higher. However, although most potent scaffolds found with the DiFMUP assay were confirmed in the mobility shift format, the off-chip mobility shift assay led to the identification of previously unidentified chemical scaffolds with improved druglike properties.  相似文献   

8.
This study explored the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes on the treatment of obesity-induced fracture healing. Quantitative real-time PCR was used to detect the expression of lncRNA H19, miR-467 and Hoxa10 and combined with WB detection to detect osteogenic markers (RUNX2, OPN, OCN). Determine whether exosomes have entered BMSCs by immunofluorescence staining. Alkaline phosphatase (ALP) and alizarin red staining (ARS) staining were used to detect ALP activity and calcium deposition. We found that high-fat treatment can inhibit the secretion of BMSCs-derived exosomes and affect the expression of H19 carried by them. In vivo and in vitro experiments show that high-fat or obesity factors can inhibit the expression of osteogenic markers and reduce the staining activity of ALP and ARS. The treatment of exosomes from normal sources can reverse the phenomenon of osteogenic differentiation and abnormal fracture healing. Further bioinformatics analysis found that miR-467 as a regulatory molecule of lncRNA H19 and Hoxa10, and we verified the targeting relationship of the three through dual luciferase report experiments. Further, we found similar phenomena in ALP and ARS staining. Bone marrow mesenchymal stem cell-derived exosomes improve fracture healing caused by obesity.  相似文献   

9.
10.
Purpose: Natural resources are receiving growing interest because of their possible conversion from a cheap and easily available material into a biomedical product. Cuttlefish bone from Sepia Officinalis was investigated in order to obtain an hydroxyapatite porous scaffold using hydrothermal transformation. Methods: Complete conversion of the previous calcium carbonate (aragonite) phase into a calcium phosphate (hydroxyapatite) phase was performed with an hydrothermal transformation at 200 °C (~ 15 atm), for four hours, with an aqueous solution of KH2PO4 in order to set the molar ratio Ca/P = 10/6 in a reactor (Parr 4382). The complete conversion was then analyzed by TGA, ATR-FTIR, x-ray diffraction, and SEM. Moreover, the material was biologically investigated with MC3T3-E1 in static cultures, using both osteogenic and maintenance media. The expression of osteogenic markers as ALP and osteocalcin and the cell proliferation were investigated. Results: Cuttlefish bone has been successfully transformed from calcium carbonate into calcium phosphate. Biological characterization revealed that osteogenic markers are expressed using both osteogenic and maintenance conditions. Cell proliferation is influenced by the static culture condition used for this three-dimensional scaffold. Conclusions: The new scaffold composed by hydroxyapatite and derived for a natural source presents good biocompatibility and can be used for further investigations using dynamic cultures in order to improve cell proliferation and differentiation for bone tissue engineering.  相似文献   

11.
12.
We have developed the first highly selective fluorescence probe for alkaline phosphatase (ALP), TG-mPhos. This probe shows selectivity for ALP over protein tyrosine phosphatase and protein serine/threonine phosphatase. Our previously developed TG-Phos, which has a phenolic phosphate linkage in place of the alcoholic phosphate linkage of TG-mPhos, lacks this selectivity. TG-mPhos should enable precise fluorescence imaging of ALP activity in biological applications.  相似文献   

13.
The use of an amperometric graphite-Teflon composite tyrosinase biosensor for the rapid monitoring of alkaline phosphatase (ALP), with no need of an incubation step and using phenyl phosphate as the substrate, is reported. Phenol generated by the action of ALP is monitored at the tyrosinase composite electrode through the electrochemical reduction of the o-quinone produced to catechol, which produces a cycle between the tyrosinase substrate and the electroactive product, giving rise to the amplification of the biosensor response and to the sensitive detection of ALP. The current was measured at -0.10 V 5 min after the addition of ALP. As a compromise between high ALP activity and high sensitivity for the detection of phenol, a pH of 8.5 was chosen. The substrate concentration was also optimized. A linear calibration plot was obtained for ALP between 2.0 x 10(-13) and 2.5 x 10(-11), with a detection limit of 6.7 x 10(-14) M. Different types of milk were analyzed with good results, using an extremely simple and rapid procedure.  相似文献   

14.
15.
Chemiluminescent assays of various enzymes have been developed using indoxyl derivatives as substrates. The principle of the method is as follows: an enzyme causes hydrolysis of an indoxyl derivative to an intermediate indoxyl that is readily oxidized to indigo dye and simultaneously produces hydrogen peroxide (H2O2). Hydrogen peroxide is detected chemiluminescently using isoluminol-microperoxidase. Alkaline phosphatase (ALP), beta-D-galactosidase (beta-gal), and beta-glucosidase were assayed by this method using 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), and 5-bromo-4-chloro-3-indolyl-beta-D-glucoside, respectively, as substrates. Using BCIP and X-Gal substrates, we have been able to detect 10(-19) mol of ALP and beta-gal, respectively. This assay system can be applied to enzyme immunoassay and DNA probe assay.  相似文献   

16.
Gold nanoparticles (AuNPs) exhibit characteristic absorption peaks in the ultraviolet visible region due to their special surface plasmon resonance effect. This characteristic absorption peak would change with the relative colour varying from wine red to orange‐yellow upon sequential addition of ascorbic acid (AA) into the mixture of AuNPs and Ag(I). Similar observations also could be found when the hydrolysis product of sodium l ‐ascorbyl‐2‐phosphate with alkaline phosphatase (ALP) was used as an alternative to AA. Results of structure characterization confirmed that the phenomena were due to the reduction of Ag(I) to Ag(0) on the surface of AuNPs and the formation of core‐shell AuNPs@Ag. Therefore, a colorimetric assay for rapid visual detection of AA and ALP based on redox‐modulated silver deposition on AuNPs has been proposed. Under the optimal experimental conditions, the absorbance variation ΔA522 nm/A370 nm of AuNPs was proportional to the concentration of AA (5–60 μmol/L) and ALP (3–18 U/L) with the corresponding detection limit of 2.44 μmol/L for AA and 0.52 U/L for ALP. The assay showed excellent selectivity towards AA and ALP. Moreover, the assay has been applied to detect AA and ALP activity in real samples with satisfying results.  相似文献   

17.
Mixed isomers of conjugated linoleic acid (CLA) have been shown to have variable effects on bone formation and resorption in animals. The variable effects of CLA on bone physiology may be due to the different isomers present in common commercial preparations of CLA, and the effects of the predominant individual isomers (9cis,11trans and 10trans,12cis CLA) are not clear. The objective of this study was to determine the effects of individual and mixed isomers of CLA on mineralized bone nodule formation and alkaline phosphatase (ALP) activity in vitro using long-term cultures of SaOS-2 cells. Mineralized bone nodules were stained using the von Kossa method, and ALP activity in cell lysates was measured as a marker of early osteoblast differentiation. The 9cis,11trans isomer increased the number (~4- to 11-fold) and size (~2- to 5-fold) of mineralized bone nodules from 25 to 100 microM, but the 10trans,12cis isomer did not. The increase in mineralized bone nodule formation by 9cis,11trans CLA was accompanied by a variable increase in ALP activity. These results show that the 9cis,11trans isomer of CLA increases the formation of mineralized bone nodules using bone cells of human origin, and provide evidence for isomer-specific effects of CLA on bone health.  相似文献   

18.
This study describes the biochemical characterization of a phosphatase activity present on the cell surface of Candida parapsilosis, a common cause of candidemia. Intact yeasts hydrolyzed p-nitrophenylphosphate to p-nitrophenol at a rate of 24.30+/-2.63 nmol p-nitrophenol h(-1) 10(-7) cells. The cell wall distribution of the Ca. parapsilosis enzyme was demonstrated by transmission electron microscopy. The duration of incubation of the yeast cells with the substrate and cell density influenced enzyme activity linearly. Values of V(max) and apparent K(m) for p-nitrophenylphosphate hydrolysis were 26.80+/-1.13 nmol p-nitrophenol h(-1) 10(-7) cells and 0.47+/-0.05 mM p-nitrophenylphosphate, respectively. The ectophosphatase activity was strongly inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium orthovanadate, sodium molybdate, sodium fluoride, and inorganic phosphate, the final product of the reaction. Only the inhibition caused by sodium orthovanadate was irreversible. Different phophorylated amino acids were used as substrates for the Ca. parapsilosis ectoenzyme, and the highest rate of phosphate hydrolysis was achieved using phosphotyrosine. A direct relationship between ectophosphatase activity and adhesion to host cells was established. In these assays, irreversible inhibition of enzyme activity resulted in decreased levels of yeast adhesion to epithelial cells.  相似文献   

19.
Alkaline phosphatase (ALP) is glycoprotein structured metalophosphatase with several defined functions. It is present in many tissues of all living beings from bacteria to mammals. The enzyme may catalyse the hydrolysis of various monophosphate esters at alkaline pH. The objective of this study was to quantify ALP functioning particularly in the membranes of eukaryotic cells. The membranes of seven different cells (myeloma cells; hybrid cells; erythroleukaemia cells; lymphocytes and erythrocytes) were tested for ALP activity using a cellular enzyme assay, which is based on the conversion of para-nitrophenylphosphate (p-NPP) to para-nitrophenol and the colorimetric determination of the resulting coloured product. The test system was optimised with respect to substrate concentration, reaction time and the number of cells used as a source of enzyme. The obtained values were converted to quantitative results through a standard curve created using commercial ALP. In order to determine the effect of serum concentration on enzyme activity, 1G2 hybridoma, which is among the cells used in this study and which synthesizes monoclonal antibody against human serum albumin, was produced in different serum concentrations ranging from 0 to 15%.  相似文献   

20.
Skeletal growth and tissue remodelling processes are characterized by an elevated collagen and proteoglycan biosynthesis. The xylosyltransferases I and II are the rate-limiting step enzymes in proteoglycan biosynthesis and serum xylosyltransferase (XT) activity has been shown to be a biomarker for the actual proteoglycan biosynthesis rate. Here, XT, alkaline phosphatase (ALP), bone ALP (BALP) activities were measured in 133 juvenile Caucasians. Serum XT activities in juveniles were elevated and significantly correlated with ALP and BALP. In an osteoblast-like cell model using SAOS-2 cells mineralization and bone nodule formation were induced and XT-I, XT-II and ALP were monitored. Induction of mineralization in SAOS-2 cells resulted in a long-term increase of XT-I mRNA and enzyme activity, which could be paralleled with elevated ALP activity. In addition, HGH and IGF-I treatment of SAOS-2 cells led to an increased expression of XT-I and ALP. These results point to skeletal growth and tissue remodeling as a cause of the high XT activity in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号