首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual motion information from dynamic environments is important in multisensory temporal perception. However, it is unclear how visual motion information influences the integration of multisensory temporal perceptions. We investigated whether visual apparent motion affects audiovisual temporal perception. Visual apparent motion is a phenomenon in which two flashes presented in sequence in different positions are perceived as continuous motion. Across three experiments, participants performed temporal order judgment (TOJ) tasks. Experiment 1 was a TOJ task conducted in order to assess audiovisual simultaneity during perception of apparent motion. The results showed that the point of subjective simultaneity (PSS) was shifted toward a sound-lead stimulus, and the just noticeable difference (JND) was reduced compared with a normal TOJ task with a single flash. This indicates that visual apparent motion affects audiovisual simultaneity and improves temporal discrimination in audiovisual processing. Experiment 2 was a TOJ task conducted in order to remove the influence of the amount of flash stimulation from Experiment 1. The PSS and JND during perception of apparent motion were almost identical to those in Experiment 1, but differed from those for successive perception when long temporal intervals were included between two flashes without motion. This showed that the result obtained under the apparent motion condition was unaffected by the amount of flash stimulation. Because apparent motion was produced by a constant interval between two flashes, the results may be accounted for by specific prediction. In Experiment 3, we eliminated the influence of prediction by randomizing the intervals between the two flashes. However, the PSS and JND did not differ from those in Experiment 1. It became clear that the results obtained for the perception of visual apparent motion were not attributable to prediction. Our findings suggest that visual apparent motion changes temporal simultaneity perception and improves temporal discrimination in audiovisual processing.  相似文献   

2.
Chen L  Shi Z  Müller HJ 《PloS one》2011,6(2):e17130
Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture" visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left- or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs--one short (75 ms), one long (325 ms)--were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects.  相似文献   

3.
Human observers are able to perceive the motion direction of actions (either forward or backward) on the basis of the articulatory, relative motion of the limbs, even when the actions are shown under point-light conditions. However, most studies have focused on the action of walking. The primary purpose of the present study is to further investigate the perception of articulatory motion in different point-light actions (walking, crawling, hand walking, and rowing). On each trial, participants were presented with a forward or backward moving person and they had to decide on the direction of articulatory motion of the person. We analyzed sensitivity (d'') as well as response bias (c). In addition to the type of action, the diagnosticity of the available information was manipulated by varying the visibility of the body parts (full body, only upper limbs, or only lower limbs) and the viewpoint from which the action was seen (from frontal view to sagittal view). We observe that, depending on the specific action, perception of direction of motion is driven by different body parts. Implications for the possible existence of a life detector, i.e., an evolutionarily old and innate visual filter that is tuned to quickly and automatically detect the presence of a moving living organism and direct attention to it, are discussed.  相似文献   

4.
In temporal ventriloquism, auditory events can illusorily attract perceived timing of a visual onset [1-3]. We investigated whether timing of a static sound can also influence spatio-temporal processing of visual apparent motion, induced here by visual bars alternating between opposite hemifields. Perceived direction typically depends on the relative interval in timing between visual left-right and right-left flashes (e.g., rightwards motion dominating when left-to-right interflash intervals are shortest [4]). In our new multisensory condition, interflash intervals were equal, but auditory beeps could slightly lag the right flash, yet slightly lead the left flash, or vice versa. This auditory timing strongly influenced perceived visual motion direction, despite providing no spatial auditory motion signal whatsoever. Moreover, prolonged adaptation to such auditorily driven apparent motion produced a robust visual motion aftereffect in the opposite direction, when measured in subsequent silence. Control experiments argued against accounts in terms of possible auditory grouping, or possible attention capture. We suggest that the motion arises because the sounds change perceived visual timing, as we separately confirmed. Our results provide a new demonstration of multisensory influences on sensory-specific perception [5], with timing of a static sound influencing spatio-temporal processing of visual motion direction.  相似文献   

5.
Tactile rivalry demonstrated with an ambiguous apparent-motion quartet   总被引:1,自引:0,他引:1  
When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception.  相似文献   

6.
Pack CC  Livingstone MS  Duffy KR  Born RT 《Neuron》2003,39(4):671-680
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.  相似文献   

7.
Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading.  相似文献   

8.
M R Dawson 《Spatial Vision》1989,4(4):241-251
Two experiments attempted to determine the effect of the topological property of connectedness on the perception of apparent motion. In Experiment I, direction detection points at subjective equality (PSEs) were measured in a motion competition paradigm. Results indicated that apparent motion was not more likely to be seen between topologically identical elements (e.g., two connected figures) than between elements similar in appearance, but which differed with respect to connectedness. This failed to replicate one finding of Chen (1985). Experiment II tested the possibility that connectedness might affect the quality or visibility of apparent motion. Displacement PSEs for the visibility of motion were measured. Apparent motion between identical figures was significantly more visible than apparent motion between figures similar in appearance, but of different connectedness. These results are discussed in terms of a two-stage model of the long-range motion system.  相似文献   

9.
The way we perceive the visual world depends crucially on the state of the observer. In the present study we show that what we are holding in working memory (WM) can bias the way we perceive ambiguous structure from motion stimuli. Holding in memory the percept of an unambiguously rotating sphere influenced the perceived direction of motion of an ambiguously rotating sphere presented shortly thereafter. In particular, we found a systematic difference between congruent dominance periods where the perceived direction of the ambiguous stimulus corresponded to the direction of the unambiguous one and incongruent dominance periods. Congruent dominance periods were more frequent when participants memorized the speed of the unambiguous sphere for delayed discrimination than when they performed an immediate judgment on a change in its speed. The analysis of dominance time-course showed that a sustained tendency to perceive the same direction of motion as the prior stimulus emerged only in the WM condition, whereas in the attention condition perceptual dominance dropped to chance levels at the end of the trial. The results are explained in terms of a direct involvement of early visual areas in the active representation of visual motion in WM.  相似文献   

10.
Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception whenever one perceptual interpretation is dominant, and the instability of perception that causes perceptual dominance to alternate between perceptual interpretations upon extended viewing. This review summarizes several ways in which contextual information can help the brain resolve visual ambiguities and construct temporarily stable perceptual experiences. Temporal context through prior stimulation or internal brain states brought about by feedback from higher cortical processing levels may alter the response characteristics of specific neurons involved in rivalry resolution. Furthermore, spatial or crossmodal context may strengthen the neuronal representation of one of the possible perceptual interpretations and consequently bias the rivalry process towards it. We suggest that contextual influences on perceptual choices with ambiguous visual stimuli can be highly informative about the neuronal mechanisms of context-driven inference in the general processes of perceptual decision-making.  相似文献   

11.

Background

Vision provides the most salient information with regard to stimulus motion, but audition can also provide important cues that affect visual motion perception. Here, we show that sounds containing no motion or positional cues can induce illusory visual motion perception for static visual objects.

Methodology/Principal Findings

Two circles placed side by side were presented in alternation producing apparent motion perception and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. When the flash onset was synchronized to tones of alternating frequencies, a circle blinking at a fixed location was perceived as lateral motion in the same direction as the previously exposed apparent motion. Furthermore, the effect lasted at least for a few days. The effect was well observed at the retinal position that was previously exposed to apparent motion with tone bursts.

Conclusions/Significance

The present results indicate that strong association between sound sequence and visual motion is easily formed within a short period and that, after forming the association, sounds are able to trigger visual motion perception for a static visual object.  相似文献   

12.
Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal''s accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.  相似文献   

13.
Expectations have been shown to be powerful modulators of pain [1] and emotion [2] in placebo studies. In such experiments, expectations are induced by instructions combined with manipulation of the sensory experience that is unknown to the subjects. After an expectation learning phase where a painful stimulation is surreptitiously lowered following placebo application, the placebo effectively reduces subjective pain intensity in a subsequent test phase [3]. The strength of this placebo effect is closely related to the induced expectation [4]. Here, we asked whether this powerful cognitive bias reflects a general property of sensory information processing and tested whether the contents of visual awareness could be altered by a placebo-like expectation manipulation. We found a dramatic effect of experimentally induced expectations on the perception of an ambiguous visual motion stimulus. This shows that expectations have a strong and general influence on our experience of the sensory input independently of its specific type and content.  相似文献   

14.
Biological motion stimuli, such as orthographically projected stick figure walkers, are ambiguous about their orientation in depth. The projection of a stick figure walker oriented towards the viewer, therefore, is the same as its projection when oriented away. Even though such figures are depth-ambiguous, however, observers tend to interpret them as facing towards them more often than facing away. Some have speculated that this facing-the-viewer bias may exist for sociobiological reasons: Mistaking another human as retreating when they are actually approaching could have more severe consequences than the opposite error. Implied in this hypothesis is that the facing-towards percept of biological motion stimuli is potentially more threatening. Measures of anxiety and the facing-the-viewer bias should therefore be related, as researchers have consistently found that anxious individuals display an attentional bias towards more threatening stimuli. The goal of this study was to assess whether physical exercise (Experiment 1) or an anxiety induction/reduction task (Experiment 2) would significantly affect facing-the-viewer biases. We hypothesized that both physical exercise and progressive muscle relaxation would decrease facing-the-viewer biases for full stick figure walkers, but not for bottom- or top-half-only human stimuli, as these carry less sociobiological relevance. On the other hand, we expected that the anxiety induction task (Experiment 2) would increase facing-the-viewer biases for full stick figure walkers only. In both experiments, participants completed anxiety questionnaires, exercised on a treadmill (Experiment 1) or performed an anxiety induction/reduction task (Experiment 2), and then immediately completed a perceptual task that allowed us to assess their facing-the-viewer bias. As hypothesized, we found that physical exercise and progressive muscle relaxation reduced facing-the-viewer biases for full stick figure walkers only. Our results provide further support that the facing-the-viewer bias for biological motion stimuli is related to the sociobiological relevance of such stimuli.  相似文献   

15.
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.  相似文献   

16.
We studied postural reactions evoked by vibrational stimulation of the anterior tibial and posterior neck muscles under three different conditions of visual control (in a darkened room): (i) upon standing with the eyes open, EO, with perception of a stationary 2D image of the visual environment on the screen, (ii) under conditions of perception of a 3D virtual visual environment, VVE, and (iii) upon standing with the eyes closed, EC. Vibrational stimulation of both muscle groups evoked forward inclinations of the body; average values of the latter under control conditions (EC) were close to each other. The VVE mimicking a real visual environment possessed two planes, a mobile foreground one, whose shifts were programmed in such a manner that they correlated with oscillations of the body, and a stable background one. The tested subjects were asked to use the latter as a visual reference. Under VVE conditions, the amplitude of postural reactions depended on the feedback coefficient between the body movements and shifts of the VVE foreground and the direction of this feedback (its synphase or antiphase, sph or aph, mode). Postural responses at the feedback sph direction became greater with increase in the feedback coefficient (i.e., with increases in the magnitude of shifts of the VVE foreground) and reached values typical of standing under EC conditions. In the case of the aph type of feedback, the responses changed insignificantly. If the lowest feedback coefficient, 1.0, was used, the postural responses tended to decrease, as compared with those under EO conditions. The difference between the values observed at the sph and aph types of feedback with similar coefficients was manifested more intensely in the case of stimulation of the neck muscles. This fact shows that postural reactions triggered by afferent signals from the neck muscles depend more considerably on the ongoing visual afferentation.  相似文献   

17.
Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed.  相似文献   

18.
The question of whether perceptual illusions influence eye movements is critical for the long-standing debate regarding the separation between action and perception. To test the role of auditory context on a visual illusion and on eye movements, we took advantage of the fact that the presence of an auditory cue can successfully modulate illusory motion perception of an otherwise static flickering object (sound-induced visual motion effect). We found that illusory motion perception modulated by an auditory context consistently affected saccadic eye movements. Specifically, the landing positions of saccades performed towards flickering static bars in the periphery were biased in the direction of illusory motion. Moreover, the magnitude of this bias was strongly correlated with the effect size of the perceptual illusion. These results show that both an audio-visual and a purely visual illusion can significantly affect visuo-motor behavior. Our findings are consistent with arguments for a tight link between perception and action in localization tasks.  相似文献   

19.
The flourishing of studies on the neural correlates of decision-making calls for an appraisal of the relation between perceptual decisions and conscious perception. By exploiting the long integration time of noisy motion stimuli, and by forcing human observers to make difficult speeded decisions--sometimes a blind guess--about stimulus direction, we traced the temporal buildup of motion discrimination capability and perceptual awareness, as assessed trial by trial through direct rating. We found that both increased gradually with motion coherence and viewing time, but discrimination was systematically leading awareness, reaching a plateau much earlier. Sensitivity and criterion changes contributed jointly to the slow buildup of perceptual awareness. It made no difference whether motion discrimination was accomplished by saccades or verbal responses. These findings suggest that perceptual awareness emerges on the top of a developing or even mature perceptual decision. We argue that the middle temporal (MT) cortical region does not confer us the full phenomenic depth of motion perception, although it may represent a precursor stage in building our subjective sense of visual motion.  相似文献   

20.
Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号