首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A closed-loop system for the automated detection and control of epileptic seizures was created and tested in three Genetic Absence Epilepsy Rats from Strasbourg (GAERS) rats. In this preliminary study, a set of four EEG features were used to detect seizures and three different electrical stimulation strategies (standard (130 Hz), very high (500 Hz) and ultra high (1000 Hz)) were delivered to terminate seizures. Seizure durations were significantly shorter with all three stimulation strategies when compared to non-stimulated (control) seizures. We used mean seizure duration of epileptiform discharges persisting beyond the end of electrical stimulation as a measure of stimulus efficacy. When compared to the duration of seizures stimulated in the standard approach (7.0 s ± 10.1), both very high and ultra high frequency stimulation strategies were more effective at shortening seizure durations (1.3 ± 2.2 s and 3.5 ± 6.4 s respectively). Further studies are warranted to further understand the mechanisms by which this therapeutic effect may be conveyed, and which of the novel aspects of the very high and ultra high frequency stimulation strategies may have contributed to the improvement in seizure abatement performance when compared to standard electrical stimulation approaches.  相似文献   

2.
Taking stock of complex trait genetics in mice   总被引:11,自引:0,他引:11  
The mapping of complex trait loci in mice has recently become very popular thanksto dense genetic maps, better approaches to linkage analysis and the continued value of the mouse as a key model organism for human disease. Neverthelless, the ultimate goal remains very difficult: to identify genes that underlie complex traits and to understand their function at a molecular level. In assessing the prospects of current efforts, it helps to review the findings of earlier studies of complex traits and, despite all the technology, to be reminded of the inherent benefits and limitations at the source of genetic variation: the laboratory mouse. With the right perspective it should be possible for geneticists analysing complex triats to take full advantage of the resources that the genome project will provide.  相似文献   

3.
Twenty-five patients in a series of 51 undergoing partial or complete section of the corpus callosum for the treatment of intractable epilepsy experienced complex partial seizures among their seizure types preoperatively. Ten of these 25 patients have experienced no further complex partial seizures. Reduction in severity of seizures has been found in 11 of the 15 patients still experiencing this seizure type, and 3 have had greater than 80% frequency reduction. These findings are consistent with the electrophysiologic observations of Lieb on the relative unimportance of the hippocampal commissure in man and the behavioral observations of Quesney on unilateral versus bilateral temporal lobe seizure activity.  相似文献   

4.
Wheel running was monitored in B x D recombinant inbred (RI) mice under dark-dark (DD) conditions, and the mean circadian period was calculated for each strain. There were significant differences for this trait among B x D recombinant inbred strains (p < .0001) and a narrow-sense heritability of 21%. Analysis of strain means and variances indicates that at least four segregating loci contribute to the genetic variance for the free-running circadian period in this population. Correlation of the strain means for the circadian period of wheel running for each RI strain against the distribution of markers at over 1500 loci along the mouse genome identified a number of provisional quantitative trait loci (QTL). There were provisional QTL for wheel running at p < .001 on chromosome 11 and at p < .01 on chromosomes 1, 6, 9, 17, and 19. Most were in agreement with a second analysis done under similar conditions.  相似文献   

5.
在教学中发现,学生普遍对孟德尔遗传规律的应用存在问题,在处理基因频率和基因型频率的有关问题时常常出现概念不清的错误。为此,笔者特别精选了几道例题从不同侧面来分析产生错误的原因和分析解决问题的方法,取得了较好的教学效果。  相似文献   

6.
Reactive changes in hippocampal astrocytes are frequently encountered in association with temporal lobe epilepsy in humans and with drug or kindling-induced seizures in animal models. These reactive changes generally involve increases in astrocyte size and number and often occur together with neuronal loss and synaptic rearrangements. In addition to producing astrocytic changes, seizure activity can also produce reactive changes in microglia, the resident macrophages of brain. In this study, we examined the effects of recurrent seizure activity on hippocampal neurons and glia in the epileptic EL mouse, a natural model of human multifactorial idiopathic epilepsy and complex partial seizures. Timm staining was used to evaluate infrapyramidal mossy fiber organization and the optical dissector method was used to count Nissl-stained neurons in hippocampus of adult (about one year of age) EL mice and nonepileptic C57BL/6J (B6) and DDY mice. Immunostaining forglial fibrillary acidic protein (GFAP) and Iba1, an actin cross-linking molecule restricted to macrophages and microglia, was used to evaluate astrocytes and microglia, respectively. The EL mice experienced about 25–30 complex partial seizures with secondary generalization during routine weekly cage changing. No significant differences were found among the mouse strains for Timm staining scores or for neuronal counts in the CA1 and CA3 pyramidal fields or in the hilus. However, the number of GFAP-positive astrocytes was significantly elevated in the stratum radiatum and hilus of EL mice, while microglia appeared hyper-ramified and were more intensely stained in EL mice than in the B6 or DDY mice in the hilus, parietal cortex, and pyriform cortex. The results indicate that recurrent seizure activity in EL mice is associated with abnormalities in hippocampal astrocytes and brain microglia, but is not associated with obvious neuronal loss or mossy fiber synaptic rearrangements. The EL mouse can be a useful model for evaluating neuron-glia interactions related to idiopathic epilepsy.  相似文献   

7.
Auditory aspects of seizure in the genetically epilepsy prone rat   总被引:1,自引:0,他引:1  
The organ of Corti of Genetically Epilepsy Prone Rats was examined anatomically and electrophysiologically using scanning electron microscopy (SEM) and electrophysiological recording of alternating current cochlear potentials (ACCP) and N1, a volume conductor recording of the primary auditory afferent action potentials. ACCPs for GEPRs with low intensity seizures (Acoustic Response Score (ARS) = 2 or 3) and high intensity seizures (ARS = 9) showed similar impairment in cochlear function. Approximately a 25-35 dB shift in input-output functions was present in GEPRs as compared to controls. SEM revealed several types of possible genetic abnormalities which explain the deficits in cochlear function and could serve as the basis for seizure predisposition in these animals.  相似文献   

8.
The genetics of epilepsy in the Belgian tervuren and sheepdog   总被引:1,自引:0,他引:1  
Idiopathic epilepsy is characterized by recurrent seizure activity without an identifiable underlying anatomic defect. Dogs experiencing repeated bouts of severe seizures are given therapeutic medication to control their frequency and severity. Idiopathic epilepsy has been reported in many dog breeds and was identified as the predominant health issue facing dog breeds in a recent survey by the American Kennel Club. A growing body of evidence supports a hereditary basis for idiopathic epilepsy, with a variety of genetic inheritance models proposed. In the Belgian tervuren and sheepdog, epilepsy is highly heritable with a polygenic mode of inheritance, though apparently influenced by a single autosomal recessive locus of large effect. In an effort to establish molecular linkage between the epileptic phenotype and the locus of large effect, we have screened genomic DNA from families of affected tervuren and sheepdogs with 100 widely dispersed, polymorphic canine microsatellite markers (0.595 average PIC value). Although not significant (LOD scores <3.0), three genomic regions have shown nominal linkage between markers and the epileptic phenotype. Additional related dogs are being screened with these and additional markers to increase the power to detect the presence of a linked locus.  相似文献   

9.
The purpose of this study was to determine the QTL that influence acute, light-induced retinal degeneration differences between the BALB/cByJ and 129S1/SvImJ mouse strains. Five- to 6-week-old F2 progeny of an intercross between the two strains were exposed to 15,000 LUX of white light for 1 h after their pupils were dilated, placed in the dark for 16 h, and kept for 10–12 days in dim cyclic light before retinal rhodopsin was measured spectrophotometrically. This was used as the quantitative trait for retinal degeneration. Neither gender nor pigmentation had a significant influence on the amount of rhodopsin after light exposure in the F2 progeny. For genetic study, DNAs of the 27–36 F2 progeny with the highest and 27–36 F2 with the lowest levels of rhodopsin after light exposure were genotyped with 71 dinucleotide repeat markers spanning the genome. Any marker with a 95% probability of being associated with phenotype was tested in all 289 F2 progeny. Data were analyzed with Map Manager QTX. Significant QTL were found on mouse Chrs 1 and 4, and suggestive QTL on Chrs 6 and 2. The four QTL together equal an estimated 78% of the total genetic effect, and each of the QTL represents a gene with BALB/c susceptible alleles. The Chr 6 QTL is in the same region as a highly significant age-related retinal degeneration QTL found previously. Identification of these QTL is a first step toward identifying the modifier genes/alleles they represent, and identification of the modifiers may provide important information for human retinal diseases that are accelerated by light exposure.  相似文献   

10.
Haplotype blocks are conceptually defined as genomic segments harbouring sets of coupled polymorphisms that reflect a common ancestral origin. Experimentally, however, haplotype blocks are characterized using computational algorithms based on incomplete inventories of polymorphisms. Haplotype blocks and their deduced strain-distribution patterns are considered to be extremely powerful for use in genetic association and mapping experiments in laboratory mice and rats. However, recent high-density SNP screening in commonly used mouse inbred strains reveals a complex pattern, suggesting that the current expectations for the use of haplotype blocks in genetic mapping will have to be revisited.  相似文献   

11.
A marker-assisted introgression (MAI) experiment was conducted to use genetic markers to transfer each of the three trypanotolerance QTL from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. We used a backcross strategy that consisted of selecting two lines, each carrying two of the donor QTL alleles through the backcross (BC) phase. At the fourth BC generation, single-carrier animals were selected for the production of homozygous animal in the intercross phase. The QTL regions (QTLR) were located on chromosomes MMU1, MMU5, and MMU17. Groups of mice with different genotypes and the parental lines were subjected to a challenge with Trypanosoma congolense. The results show that trypanotolerance QTL was successfully moved into the recipient background genotype, yielding a longer survival time. The mean estimated survival time was 57.9, 49.5, and 46.8 days for groups of mice carrying the donor QTL on MMU1, MMU5, and MMU17 on A/J background. The mean estimated survival time was 29.7 days for the susceptible A/J line and 68.8 days for the resistant C57BL/6 line. The estimated QTLR effects are close to 30% smaller than those in the original mapping population which was likely caused by the difference in the background on which the effects of QTLR are tested. This is the first report of successful marker-assisted introgression of QTL in animals. It is experimental proof of the use of genetic markers for marker-assisted introgression in animal breeding.Institut National des Recherches Agricoles du Bénin, 01 BP 884 COTONOU, République du Bénin  相似文献   

12.
13.
In this paper we discuss an approach, using methods of non-linear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. The method involves a comparison of recordings taken from electrodes adjacent to and remote from the site of ictal onset. In particular, we define a non-linear quantity which we call 'marginal predictability'. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally.  相似文献   

14.
15.
A marker-assisted introgression (MAI) experiment was conducted to transfer trypanotolerance quantitative trait loci (QTL) from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. The objective was to assess the effect of three previously identified chromosomal regions on mouse chromosomes 1 (MMU1), 5 (MMU5) and 17 (MMU17) in different genetic backgrounds on the survival pattern following infection with Trypanosoma congolense. An exploratory data analysis revealed a biphasic pattern of time to death, with highly distinct early and late mortality phases. In this paper, we present survival analysis methods that account for the biphasic mortality pattern and results of reanalyzing the data from the MAI experiment. The analysis with a Weibull mixture model confirmed the biphasic pattern of time to death. Mortality phase, an unobserved variable, appears to be an important factor influencing survival time and is modeled as a binary outcome variable using logistic regression analysis. Accounting for this biphasic pattern in the analysis reveals that a previously observed sex effect on average survival is rather an effect on proportion of mice in the two mortality phases. The C57BL/6 (donor) QTL alleles on MMU1 and MMU17 act dominantly in the late mortality phase while the A/J (recipient) QTL allele on MMU17 acts dominantly in the early mortality phase. From this study, we found clear evidence for a biphasic survival pattern and provided models for its analysis. These models can also be used when studying defense mechanisms against other pathogens. Finally, these approaches provide further information on the nature of gene actions.  相似文献   

16.
17.
Genetic factors influence virtually every human disorder, determining disease susceptibility or resistance and interactions with environmental factors. Our recent successes in the genetic mapping and identification of the molecular basis of mendelian traits have been remarkable. Now, attention is rapidly shifting to more-complex, and more-prevalent, genetic disorders and traits that involve multiple genes and environmental effects, such as cardiovascular disease, diabetes, rheumatoid arthritis and schizophrenia. Rather than being due to specific and relatively rare mutations, complex diseases and traits result principally from genetic variation that is relatively common in the general population. Unfortunately, despite extensive efforts by many groups, only a few genetic regions and genes involved in complex diseases have been identified. Completion of the human genome sequence will be a seminal accomplishment, but it will not provide an immediate solution to the genetics of complex traits.  相似文献   

18.
We developed an F11 AIL population from an F1 cross of A/J (susceptible) and C57BL/6J (resistant) mouse strains. One thousand F11 mice were challenged with P.c. chabaudi 54X, and 340 mice selected from the phenotypic extremes for susceptibility and resistance were genotyped for microsatellite markers on Chromosomes (Chrs) 5, 8, and 17. QTL originally detected in backcross and F2 populations were confirmed on the three chromosomes within narrower genomic regions, by maximum likelihood and regression analyses. Each of the previously mapped QTL on Chrs 5 and 17 resolved into two linked QTLs. The distal and proximal QTLs on Chrs 5 and 17, respectively, map to the previously reported QTL.  相似文献   

19.
Association genetics of complex traits in plants   总被引:5,自引:0,他引:5  
Association mapping is rapidly becoming the main method for dissecting the genetic architecture of complex traits in plants. Currently most association mapping studies in plants are preformed using sets of genes selected to be putative candidates for the trait of interest, but rapid developments in genomics will allow for genome-wide mapping in virtually any plant species in the near future. As the costs for genotyping are decreasing, the focus has shifted towards phenotyping. In plants, clonal replication and/or inbred lines allows for replicated phenotyping under many different environmental conditions. Reduced sequencing costs will increase the number of studies that use RNA sequencing data to perform expression quantitative trait locus (eQTL) mapping, which will increase our knowledge of how gene expression variation contributes to phenotypic variation. Current population sizes used in association mapping studies are modest in size and need to be greatly increased if mutations explaining less than a few per cent of the phenotypic variation are to be detected. Association mapping has started to yield insights into the genetic architecture of complex traits in plants, and future studies with greater genome coverage will help to elucidate how plants have managed to adapt to a wide variety of environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号