首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Growth conditions related to inter-tree competition greatly influence black and white spruce foliage biomass and projected leaf area characteristics.

Abstract

Foliage characteristics such as biomass and area are important among other reasons because they can be related to tree growth. Despite their economic and ecologic importance, equations to characterize foliage biomass and projected area of black (Picea mariana (Miller) BSP) and white (Picea glauca (Moench) Voss) spruces are sparse. Total foliage biomass and projected leaf area, foliage biomass and leaf area density, and relative vertical distribution of black and white spruces foliage biomass and leaf area were modelled with linear and nonlinear mixed effect models. A total of 65 white spruces and 57 black spruces were destructively sampled at four different locations in Alberta, Québec, and Ontario, Canada. Our results show that for each species, total tree foliage biomass and projected leaf area is proportional to stem diameter, total height, and crown length. The addition of crown length in the equations improved the precision of the predictions of total foliage biomass for both species and diminishes greatly the site level random effect. An increase in DBH for black spruce and in the DBH to total height ratio for white spruce skewed the relative vertical foliage biomass distribution toward the base of the living crown. According to our results, growth conditions or tree development stage influence both foliage biomass and leaf area characteristics of black and white spruces. Our results emphasize the importance of inter-tree competition on foliage biomass characteristics.  相似文献   

2.
The foliage palatability hypothesis predicts that avian insectivores will preferentially forage in tree species with the greatest abundance of their arthropod prey, which in turn are associated with the tree’s foliage nutrition and palatability. We tested this hypothesis in a novel ProsopisLeucaena woodland in Puerto Rico by determining foraging preferences of five insectivorous bird species for six tree species (five alien, one native) and relating preferences to foliage arthropod biomass and leaf chemistry. The most frequently preferred tree species for foraging were the alien Prosopis juliflora (preferred by five bird species) and Pithecellobium dulce (preferred by four bird species). Both species had high foliage arthropod biomass, high N content, low lignin/N ratios, and low hemicellulose content. Compounds, previously known to affect herbivore responses to Albizia lebbeck and Leucaena leucocephala, may explain low arthropod biomass despite high N content in Albizia and avoidance of Leucaena by four bird species despite its high arthropod biomass. The native Bucida buceras had tough leaves with low N content, low arthropod biomass, and only one bird species showed a weak preference for foraging in it. Biomass of predaceous arthropods showed strong negative correlations with the ratios of lignin/N and hemicellulose/N. Some alien tree species had highly palatable foliage with high arthropod biomass and hence were preferred for foraging by avian insectivores as predicted by the foliage palatability hypothesis. High foliage palatability of some alien tree species may weaken the effect of enemy release in some novel plant communities.  相似文献   

3.
Masting is the intermittent and synchronous production of large crops, but its relation to tree growth remains elusive despite the ecological relevance of mast seeding. The production of huge fruit crops has been linked to the accumulation and consumption of resources as nutrients and carbohydrates, but no conclusive assessment has supported this assumption. To evaluate if masting takes place once trees’ canopies reach maximum foliage, changes in canopy cover were measured in Quercus ilex susbp. ballota stands before and after a masting event using the normalized difference vegetation index (NDVI). The results on the whole underline that masting in Q. ilex occurred once maximum levels of NDVI and canopy cover were reached. After the masting event, NDVI dropped, leaf shedding increased and trees produced shorter shoots, narrower tree rings and fewer acorns than before the masting event. These findings support our contention that an increase in canopy cover precedes masting.  相似文献   

4.
The time for half of the total oxidizable carbon to be converted into CO2 and other gaseous products (t1/2) was studied for five tree species used in agroforestry. The study was conducted in a perfusion system with continuous aeration, and moisture content maintained at field capacity. This method was found to be suitable for studies of the initial stages of tree foliage decomposition. The overall rate was in the decreasing order: Leucaena>Calliandra>Gliricidia>Prosopis>Cassia. Decomposition started rapidly and then decreased rapidly for 2 to 3 weeks followed by a gradual decrease which continued for the remainder of the time.The time for 50 per cent of total oxidizable carbon to decompose was about 19 days for Leucaena, 30 days for Calliandra and Gliricidia, while Prosopis and Cassia took more than 30 days. Leucaena released the largest quantity of total N into the perfusing solution while Cassia gave the lowest amount.  相似文献   

5.
Rooted cuttings ofCeanothus griseus varhorizontalis were irrigated with 0, 10, 20, 50, 75 or 100ppm nitrogen as NH4NO3 for eight weeks prior to inoculation with infectiveFrankia. After inoculation, half of the plants for each treatment nitrogen level continued to be irrigated with the preconditioning nitrogen level and half were given no more supplemental nitrogen. For plants continuously receiving nitrogen, nodule initiation (nodule number) was inversely correlated with increasing supplemental nitrogen levels, and suppressed above 50 ppm N. Leaf nitrogen above 2% in continuous-N plants correlated with greatly reduced or suppressed nodulation. Plants maintained after inoculation without supplemental nitrogen showed influence of the prior nitrogen treatment on nodulation. Preconditioning at 50 ppm and above greatly reduced the number of nodules formed. The evidence suggests that stored internal nitrogen can regulate nodulation.Plant biomass accumulated maximally when nodulation was suppressed, at 75 and 100 ppm supplemental N applied continuously. Internode elongation during the nodulation period occurred only on nodulated plants, or in the presence of supplemental N (10 ppm and above).  相似文献   

6.

Background and Aims

The aim was to assess the amounts of macro- (N, P, K, Ca and Mg) and micro-elements (Fe, Mn, Cu and Zn) lost by peach trees (Prunus persica L. Batsch) in all the nutrient removal events (pruning, flower abscission, fruit thinning, fruit harvest and leaf fall), as well as those stored in the permanent structures of the tree (roots, trunk and main branches).

Methods

Three peach cultivars were used. The biomass and nutrient composition of materials lost by trees at the different events were measured during 3 years. The biomass and nutrient composition of permanent tree structures were also measured after full tree excavation.

Results

Winter pruning and leaf fall were the events where most nutrients were removed. Nutrient losses and total requirements are given as amounts of nutrients needed per tree and also as amounts necessary to produce a t of fresh fruit.

Conclusions

The allocation of all nutrients analyzed in the different plant parts was similar in different types of peach trees, with each element having a typical “fingerprint” allocation pattern. Peach tree materials removed at tree pruning and leaf fall include substantial amounts of nutrients that could be recycled to improve soil fertility and tree nutrition. Poorly known tree materials such as flowers and fruit stones contain measurable amounts of nutrients.  相似文献   

7.
The rate of leaf CO2 assimilation (A l) and leaf area determine the rate of canopy CO2 assimilation (A c) can be thought proportional to assimilate supply for growth and structural requirements of plants. Partitioning of biomass within plants and anatomy of cells within stems can determine how assimilate supply affects both stem growth and wood density. We examined the response of stem growth and wood density to reduced assimilate supply by pruning leaf area. Removing 42% of the leaf area of Eucalyptus grandis Hill ex Maiden seedlings did not stimulate leaf-level photosynthesis (A l) or stomatal conductance, contrary to some previous studies. Canopy-level photosynthesis (A c) was reduced by 41% immediately after pruning but due almost solely to continued production of leaves, and was only 21% lower 3 weeks later. Pruning consequently reduced seedling biomass by 24% and stem biomass by 18%. These reductions in biomass were correlated with reduced A c. Pruning had no effect on stem height or diameter and reduced wood density to 338 kg m−3 compared to 366 kg m−3 in control seedlings. The lower wood density in pruned seedlings was associated with a 10% reduction in the thickness of fibre cell walls, and as fibre cell diameter was invariant to pruning, this resulted in smaller lumen diameters. These anatomical changes increased the ratio of cross-sectional area of lumen to area cell wall material within the wood. The results suggest changes to wood density following pruning of young eucalypt trees may be independent of tree volume and of longer duration.  相似文献   

8.
Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production ( GPP ) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity ( u *) was greater than 0.35 m s?1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content ( RWC) , the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP . The curves reached zero for RWC =0.41 and 0.45 for conductance and GPP , respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.  相似文献   

9.
Leafing pattern has long been considered as an important element characterizing the growth strategy of tree species; however, the consequences of leafing pattern for tree-crown formation have not been fully understood. To address this issue, the dynamic events (growth, birth, and death) of current-year shoots and leaves were investigated together with their location in saplings of a pioneer tree, Alnus sieboldiana. The leafing pattern was characterized by successive emergence and shedding of short-lived leaves. The combination of successive leafing and within-crown variation in leaf production brought about characteristic outcomes in crown morphology. In the outer crown, because of continuous leaf production, the shoots achieved great extension and enormous daughter shoot production, resulting in rapid expansion of the crown. In contrast, in the inner crown, due to early termination of leaf production, the shoots completely lost their leaves early in the growing season and consequently themselves died and were shed within the season. Such quick shedding of shoots caused “crown hollowing”, i.e., the interior crown consisted of primary branches with little secondary development or foliage. These dynamic features are an effective adaptive strategy in early succession but also may be a disadvantage to maintaining foliage for longer period. Crown maintenance associated with the longevity of structural components is thought to play an important role in survival strategy of tree species.  相似文献   

10.
Oilseed rape (Brassica napus L.) is a crop with a complex aerial architecture that can cause self-shading leading to a vertical light gradient over the foliage. Mutual shading between neighboring plants at a high sowing density also results in an alteration of photosynthetically active radiation (PAR) absorption by lower leaves. The aim of this study was to analyze the impact that light restriction on lower leaves has on shoot architecture, biomass production and allocation, nitrogen (N) fluxes, and progression of sequential senescence. Field-grown plants were collected at the end of the vegetative rest period and grown in hydroponic conditions until pod maturity. A shading treatment corresponding to a 43.4 % reduction of PAR was applied at the early flowering stage. N uptake and fluxes of N allocation and remobilization were determined by supplying K15NO3 in the nutrient solution. Photosynthesis and expression of SAG12 and Cab genes (indicators of leaf senescence progression) were also analyzed on different leaf ranks. The results showed that shading enhanced leaf development on the main stem and ramifications to optimize light capture. The expression pattern of the SAG12/Cab molecular indicator suggested a delay in leaf senescence that allowed leaf life span to be extended resulting in a more efficient leaf compound remobilization, with lower N residual contents in fallen leaves under shading. N uptake increased and N remobilization fluxes were enhanced from source organs (leaves and stem) toward sink organs (flowers). Profuse branching and late senescing varieties would be of interest for further selection programs under high sowing densities.  相似文献   

11.
Intracanopy variation in net leaf nitrogen (N) resorption and N cycling through leaves in mature walnut (Juglans regia L. cv Hartley) trees were monitored in 3 different years. Differential irradiance among the spurs sampled was inferred from differences among leaves in dry weight per unit area (LW/LA) which varied from 4.0 mg · cm–2 to 7.0 mg · cm–2 in shaded (S) and exposed (E) canopy positions, respectively. Our results, using 15N-depleted (NH4)2SO4 validated the concept that N influx and efflux through fully expanded leaves occurred concurrently during the period of embryo growth. Additionally, it also suggested that N influx into leaves was substantially greater in exposed as compared with shaded canopy positions. Because of its well documented phloem immobility, leaf Ca accumulation was used to better estimate the relative influx of N into exposed and shaded leaves. N cycling varied locally within the tree canopy, i. e. Ca (and presumably N) influx was 100% greater in exposed than shaded tree canopy positions, but influx was not influenced significantly by the proximity of developing fruit. In contrast, both the amount and percentage N efflux was significantly greater during embryo growth in fruit-bearing than defruited spurs. Net leaf N resorption averaged 2–4 times greater (25–30%) in fruit-bearing spurs than the 5–10% decrease in the leaf N content in defruited spurs. Since about 90% of leaf N content reportedly occurs as protein, fruit N demand apparently influenced protein turnover and catalysis in associated spur leaves. The amount of leaf N resorption was greater in exposed than shaded positions in the tree canopy in 2 of the 3 years of data collection. Our data show that like leaf N content, N influx, N efflux and net leaf N resorption vary throughout mature walnut tree canopies under the combined local influences of fruiting and irradiance.  相似文献   

12.
Luo T  Luo J  Pan Y 《Oecologia》2005,142(2):261-273
Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species and the associated stand foliage N-pool, leaf area index (LAI), root biomass, aboveground biomass, net primary productivity (NPP) and soil available-N content in six undisturbed forest plots along subtropical to timberline gradients on the eastern slope of the Gongga Mountains. We developed a methodology to calculate the whole-canopy mean leaf traits to include all tree species (groups) in each of the six plots through a series of weighted averages scaled up from leaf-level measurements. These defined whole-canopy mean leaf traits were equivalent to the traits of a leaf in regard to their interrelationships and altitudinal trends, but were more useful for large-scale pattern analysis of ecosystem structure and function. The whole-canopy mean leaf lifespan and leaf Nmass mainly showed significant relationships with stand foliage N-pool, NPP, LAI and root biomass. In general, as elevation increased, the whole-canopy mean leaf lifespan and leaf Narea and stand LAI and foliage N-pool increased to their maximum, whereas the whole-canopy mean SLA and leaf Nmass and stand NPP and root biomass decreased from their maximum. The whole-canopy mean leaf lifespan and stand foliage N-pool both converged towards threshold-like logistic relationships with annual mean temperature and soil available-N variables. Our results are further supported by additional literature data in the Americas and eastern China.  相似文献   

13.
Above- and belowground biomass and nitrogen (N) and phosphorus (P) distribution within threeQuercus acutissima stands were investigated in central Korea. The average age (year) and diameter at breast height (DBH, cm) were 10.8 and 7.9 for Stand 1, 38.2 and 17.1 for Stand 2, and 44.0 and 20.7 for Stand 3, respectively. Fifteen trees were destructively harvested for dimension analysis of component biomass (stem wood, stem bark, foliage, branches, and roots) plus N and P concentrations. Total biomass (t ha-1) was 88.7 for Stand 1, 154.9 for Stand 2, and 278.1 for Stand 3 while N and P contents in all tree components (kg ha-1) were 483.3 and 52.2, 697.1 and 55.0, and 1113.9 and 83.7. Nitrogen concentrations were highest in the foliage, followed by the stem bark, branches or roots, and stem wood. In contrast, P concentrations were greatest in the roots, then foliage, branches, stem bark, and stem wood. In general, N and P concentrations in these components significantly decreased with tree age and DBH, while N and P contents significantly increased with age and size. These relationships were stronger for size than for age. Our current data could be utilized to estimate N and P budgets for silvicultural practices, including fertilization, thinning, and harvesting.  相似文献   

14.
We developed and evaluated a model of the canopy of a tropical montane forest at Monteverde, Costa Rica, to estimate inorganic nitrogen (N) retention by epiphytes from atmospheric deposition. We first estimated net retention of inorganic N by samples of epiphytic bryophytes, epiphyte assemblages, vascular epiphyte foliage, and host tree foliage that we exposed to cloud water and precipitation solutions. Results were then scaled up to the ecosystem level using a multilayered model of the canopy derived from measurements of forest structure and epiphyte mass. The model was driven with hourly meteorological and event‐based atmospheric deposition data, and model predictions were evaluated against measurements of throughfall collected at the site. Model predictions were similar to field measurements for both event‐based and annual hydrologic and inorganic N fluxes in throughfall. Simulation of individual events indicated that epiphytic bryophytes and epiphyte assemblages retained 33–67 percent of the inorganic N deposited in cloud water and precipitation. On an annual basis, the model predicted that epiphytic components retained 3.4 kg N ha/yr, equivalent to 50 percent of the inorganic N in atmospheric deposition (6.8 kg N ha/yr). Our results indicate that epiphytic bryophytes play a major role in N retention and cycling in this canopy by transforming highly mobile inorganic N (ca. 50% of atmospheric deposition is NO?3) to less mobile (exchangeable NH+4) and recalcitrant forms in biomass and remaining litter and humus.  相似文献   

15.
 Three-year-old Eucalyptus nitens (Deane and Maiden) Maiden trees and 1-year-old ramets of a single clone of E. nitens were pruned to remove 0, 50% or 70% of the green crown length. This was equivalent to removal of 0, 55% or 88% of foliage area of trees, and 0, 77% or 94% of foliage area of ramets. CO2 assimilation (A) and stomatal conductance (gs) were measured at constant illumination in five height zones and three foliage-age classes of trees over a 16-month period following pruning. Foliar nitrogen (N) and phosphorus (P) concentrations were determined for each measurement time during the first 12 months of the experiment. In ramets A and gs were measured in four height zones and two foliage-age classes over a six-week period, and N and P concentrations were measured only once, at the end of the experiment. Rates of A increased by up to 175% following pruning. This response occurred throughout the canopy irrespective of position in the crown or foliage age. The magnitude of the response was generally greater in ramets than in trees, and increased with increasing severity of pruning. The initiation of the response was later, and the duration of the response was longer, in trees than ramets. In the lower crown of trees there was evidence of delayed senescence following pruning. Photosynthetic enhancement was not related to changes in foliar N concentrations. The ratio of A/N increased in many zones following pruning, especially after more severe defoliation. There was no evidence that changes in P concentrations were responsible for the result. The increases in A may have been related to changes in gs, as maximum values of gs were greater, and the ratio of A/gs was generally lower, in pruned than unpruned plants. Received: 31 December 1996 / Accepted: 19 August 1997  相似文献   

16.
We used a modified transport resistance approach to model legume tree growth, nodulation and dynamics of reserve carbohydrates after pruning. The model distributes growth between roots and shoots applying the transport resistance approach. Within shoots, growth is divided into leaves, branches and stems applying the pipe model theory. The model also accounts for the metabolic differences of principal N sources, nitrate, ammonium and atmospheric dinitrogen, in a mechanistic way. We compared the simulation results with measured biomass dynamics of Gliricidia sepium (Jacq.) Walp. (Papilionaceae: Robinieae) under humid and subhumid tropical conditions. Comparison showed that the biomass production predicted by the model is close to measured values. Total N2 fixation is also similar to measured values. Qualitatively the model increases the proportion of N2 fixation if roots acquire less mineral N. In the present study, the general form of the model is discussed and compared with similar models. The results encourage the use of this approach for studying biomass dynamics of legume trees under the scheme of periodic prunings. Also, it shows that process‐based models have potential in the simulation of trees disturbed by prunings, herbivory or similar factors.  相似文献   

17.
Currently, foliage biomass is estimated based on stem diameter or basal area. However, it is questionable whether the relations between foliage and stem observed from plantations of a single tree species can be applied to stands of different structure or species composition. In this paper, a procedure is presented to simulate foliage and branch biomass of tree crowns relative to crown size and light competition. Crowns are divided into layers and segments and each segment is divided into a foliated and an unfoliated fraction. Depending on the competitive status of the segment, leaf area density, specific leaf area and foliated branch fraction are determined. Based on this information, foliage biomass is calculated. The procedure requires a crown shape function and a measure to characterise competition for light and space of each individual segment within the canopy. Simple solutions are suggested for both requirements to enable an application with data that can be measured non-destructively in the field; these were stem position, tree height, crown base height, crown radii and some general crown shape information. The model was parameterised from single trees of Norway spruce and European beech and partly evaluated with independent data close to the investigation plot. Evaluations showed that the model can attribute the ecology of the different crown forms. Modelled foliage distribution for beech and spruce as well as total needle biomass of spruce agreed well with measurements but foliage biomass of beech was underestimated. The results are discussed in the context of a general model application in structured forests.  相似文献   

18.
As part of the Large Scale Biosphere–Atmosphere Experiment in Amazônia (LBA), we have developed a bottom‐up approach for estimating canopy‐scale fluxes of isoprene. Estimating isoprene fluxes for a given forest ecosystem requires knowledge of foliar biomass, segregated by species, and the isoprene emission characteristics of the individual tree species comprising the forest. In this study, approximately 38% of 125 tree species examined at six sites in the Brazilian Amazon emitted isoprene. Given logistical difficulties and extremely high species diversity, it was possible to screen only a small percentage of tree species, and we propose a protocol for estimating the emission capacity of unmeasured taxa using a taxonomic approach, in which we assign to an unmeasured genus a value based on the percentage of genera within its plant family which have been shown to emit isoprene. Combining this information with data obtained from 14 tree censuses at four Neotropical forest sites, we have estimated the percentage of isoprene‐emitting biomass at each site. The relative contribution of each genus of tree is estimated as the basal area of all trees of that genus divided by the total basal area of the plot. Using this technique, the percentage of isoprene‐emitting biomass varied from 20% to 42% (mean=31%; SD=8%). Responses of isoprene emission to varying light and temperature, measured on a sun‐adapted leaf of mango (Mangifera indica L.), suggest that existing algorithms developed for temperate species are adequate for tropical species as well. Incorporating these algorithms, estimates of isoprene‐emitting biomass, isoprene emission capacity, and site foliar biomass into a canopy flux model, canopy‐scale fluxes of isoprene were predicted and compared with the above‐canopy fluxes measured at two sites. Our bottom‐up approach overestimates fluxes by about 50%, but variations in measured fluxes between the two sites are largely explained by observed variation in the amount of isoprene‐emitting biomass.  相似文献   

19.
The allocation of carbohydrates from photosynthesis to various plant compartments is a key process in ecophysiology and consequently an important element in process-based ecosystem modeling. In this study, we tested generalized empirical equations in a widely applied partitioning concept based on compartment-specific biomass allometries. For an 88-year chronosequence of European beech (Fagus sylvatica L.) in Austria, we used the individual-based hybrid forest model PICUS v1.4 to compare simulations employing foliage biomass functions at different levels of generalization against runs with site-specific parameterization and observations. Sensitivities of the individual tree model were generally in line with the original stand-level partitioning concept and ecological process understanding. While stand-level leaf area increased with increasing allocation to foliage, net primary productivity showed no significant response due to saturated radiation interception in the dense chronosequence stands. Strong sensitivities were revealed at the individual tree level, where favoring allocation to the foliage compartment resulted in increasing asymmetry of competition and height–diameter relationships. Applying a generalized parameterization based on data from the full range of continental species distribution resulted in a significant overestimation of mean tree height and subsequently standing volume stock at the chronosequence. At a lower hierarchical level of generality, however, simulations with a representative regional parameterization performed satisfactorily compared to model runs using the site-specific allometry. In relation to common accuracy demands, e.g., in forest management decision support, the study suggests the rejection of a generic parameterization while corroborating the use of regional generalizations in ecosystem models.  相似文献   

20.
The development of alley cropping systems is based on the assumption that leguminous trees planted in hedgerows influence the yield of associated crops favourably by means of the additional nutrient pool applied to the soil through tree prunings. An on-station field study (split-plot design in a randomised block design) was conducted on an Eutric Cambisol under humid premontane climate conditions in Costa Rica in order to evaluate the ability of Erythrina poeppigiana, Calliandra calothyrsus and Gliricidia sepium to increase bean (Phaseolus vulgaris) yields compared to sole cropping. Soil tillage was applied as a sub-treatment in order to evaluate if soil preparation would additionally alter soil fertility and bean yield. After seven years with pruning twice per year, the size of both the total N and P pool in the pruned tree material was about three times higher for Erythrina prunings than for Calliandra and Gliricidia prunings. Two and five weeks after mulch application 50–150% higher inorganic N pools were measured in the soil from Erythrina plots, the bean shoot biomass at harvest was increased by 65–100% and the bean yield was 15–50% higher than in plots with beans alone. Hence, of the three tree species, Erythrina was the best choice for alley cropping systems in the pedoclimatic environment studied. Soil tillage reduced bean yield, soil organic matter, total soil N content and soil microbial biomass N in the top soil and is not recommended for similar soils in humid premontane climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号