首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dube MG  Pu S  Kalra SP  Kalra PS 《Peptides》2000,21(6):793-801
Hypothalamic neuropeptides play critical roles in the regulation of feeding behavior and body weight (BW). Disruption of signaling in the ventromedial nucleus by microinjection of the neurotoxin, colchicine (COL), produces transient hyperphagia with corresponding BW gain lasting for 4 days. Because the melanocortin system exerts an inhibitory control on food intake, we hypothesized that hyperphagia in COL-treated rats is due to decreased melanocortin-induced restraint on feeding. Melanocortin restraint is exerted through alpha-melanocortin-stimulating hormone derived from proopiomelanocortin (POMC) and is antagonized by agouti-related peptide produced in neurons located in the arcuate nucleus (ARC). COL (4 microg/0.5 microl saline) or saline was microinjected bilaterally into the ventromedial nucleus of adult male rats. In conjunction with BW gain, blood leptin levels were elevated, whereas POMC mRNA in the ARC was significantly decreased in COL-injected rats. Levels of alpha-melanocortin-stimulating hormone were also decreased in the micropunched paraventricular nucleus, dorsomedial nucleus, and perifornical hypothalamus, sites implicated in the control of food intake. That diminution in melanocortin signaling underlies hyperphagia was supported by the observation that intracerebroventricular injection of the MC3/MC4 melanocortin receptor agonist, MTII, prevented the hyperphagia and BW gain. Surprisingly, however, mRNA levels of the orexigenic peptide agouti-related peptide in the ARC were decreased perhaps due to the action of elevated leptin. These results show that transient hyperphagia and BW gain induced by disruption of signaling in the ventromedial nucleus results from two neurochemical rearrangements: development of leptin resistance in POMC neurons and diminution in melanocortin signaling as reflected by decreased POMC gene expression in the ARC and decreased availability of alpha-melanocortin-stimulating hormone for release in feeding relevant sites.  相似文献   

2.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

3.
Metabolic, cognitive, and environmental factors processed in the forebrain modulate food intake by changing the potency of direct controls of meal ingestion in the brain stem. Here, we behaviorally and anatomically test the role of the hypothalamic proopiomelanocortin (POMC) system in mediating some of these descending, indirect controls. Melanotan II (MTII), a stable melanocortin 4 receptor (MC4R) and melanocortin 3 receptor (MC3R) agonist injected into the fourth ventricle near the dorsal vagal complex, potently inhibited 14-h food intake by decreasing meal size but not meal frequency; SHU9119, an antagonist, increased food intake by selectively increasing meal size. Furthermore, MTII injected into the fourth ventricle increased and SHU9119 tended to decrease heart rate and body temperature measured telemetrically in freely moving rats. Numerous alpha-melanocyte-stimulating hormone-immunoreactive axons were in close anatomical apposition to nucleus tractus solitarius neurons showing c-Fos in response to gastric distension, expressing neurochemical phenotypes implicated in ingestive control, and projecting to brown adipose tissue. In retrograde tracing experiments, a small percentage of arcuate nucleus POMC neurons was found to project to the dorsal vagal complex. Thus melanocortin signaling in the brain stem is sufficient to alter food intake via changing the potency of satiety signals and to alter sympathetic outflow. Although the anatomical findings support the involvement of hypothalamomedullary POMC projections in mediating part of the descending, indirect signal, they do not rule out involvement of POMC neurons in the nucleus tractus solitarius in mediating part of the direct signal.  相似文献   

4.
5.
Fasting-induced suppression of the hypothalamic-pituitary-thyroid (HPT) axis is an adaptive response to decrease energy expenditure during food deprivation. Previous studies demonstrate that leptin communicates nutritional status to the HPT axis through thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus. Leptin targets TRH neurons either directly or indirectly via the arcuate nucleus through pro-opiomelanocortin (POMC) and agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons. To evaluate the role of these pathways in vivo, we developed double knockout mice that lack both the melanocortin 4 receptor (MC4R) and NPY. We show that NPY is required for fasting-induced suppression of Trh expression in the PVN. However, both MC4R and NPY are required for activation of hepatic pathways that metabolize T4 during the fasting response. Thus, these signaling pathways play a key role in the communication of fasting signals to reduce thyroid hormone levels both centrally and through a peripheral hepatic circuit.  相似文献   

6.
Lee M  Kim A  Conwell IM  Hruby V  Mayorov A  Cai M  Wardlaw SL 《Peptides》2008,29(3):440-447
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.  相似文献   

7.
Lin L  Park M  York DA 《Peptides》2007,28(3):643-649
Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knock out mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 i.c.v. blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in alpha-melanocyte stimulating hormone (alpha-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway.  相似文献   

8.
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.  相似文献   

9.
-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained -melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

10.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

11.
Hypothalamic pro-opiomelanocortin (POMC) neurons are the major source of anorectic melanocortin peptides in the brain. A recent study (Mineur et?al., 2011) demonstrates that nicotine directly stimulates arcuate POMC neurons through nicotinic acetylcholinergic α3β4 receptors, suggesting a new mechanism to understand the inverse relationship between tobacco smoking and body weight.  相似文献   

12.
Apolipoprotein (apo) A-IV is an anorexigenic gastrointestinal peptide that is also synthesized in the hypothalamus. The goal of these experiments was to determine whether apo A-IV interacts with the central melanocortin (MC) system in the control of feeding. The third ventricular (i3vt) administration of a subthreshold dose of apo A-IV (0.5 microg) potentiated i3vt MC-induced (metallothionein-II, 0.03 nmol) suppression of 30-min feeding in Long-Evans rats. A subthreshold dose of the MC antagonist (SHU9119, 0.1 nmol, i3vt) completely attenuated the anorectic effect of i3vt apo A-IV (1.5 microg). The i3vt apo A-IV significantly elevated the expression of c-Fos in neurons of the paraventricular nucleus of the hypothalamus, but not in the arcuate nucleus or median eminence. In addition, c-Fos expression was not colocalized with proopiomelanocortin-positive neurons. These data support a synergistic interaction between apo A-IV and melanocortins that reduces food intake by acting downstream of the arcuate.  相似文献   

13.
14.
Intracerebroventricular administration of gut peptide PYY3-36 stimulates food intake. In contrast, peripheral administration inhibits food intake, suggesting that the peptide has the opposite effect by virtue of accessing a unique subset of brain sites. A previous study suggested that peripheral PYY3-36 activates anorexigenic POMC neurons in the arcuate nucleus, and this was proposed to be the mechanism underlying the peptide's anorexigenic activity. Here, we demonstrate in an electrophysiological slice preparation that, in contrast to the original model, PYY3-36 potently and reversibly inhibits POMC neurons via postsynaptic Y2 receptors. These data show a complex role for Y2 receptors in regulation of the NPY/POMC circuitry, as they are present as inhibitory receptors on both the orexigenic NPY neurons as well as the anorexigenic POMC neurons. Secondly, these data argue against a direct role of POMC neurons in mediating the anorexigenic response to administration of peripheral PYY3-36.  相似文献   

15.
16.
Roseberry AG  Liu H  Jackson AC  Cai X  Friedman JM 《Neuron》2004,41(5):711-722
NPY and alphaMSH are expressed in distinct neurons in the arcuate nucleus of the hypothalamus, where alphaMSH decreases and NPY increases food intake and body weight. Here we use patch-clamp electrophysiology from GFP-labeled POMC and NPY neurons to demonstrate that NPY strongly hyperpolarized POMC neurons through the Y1R-mediated activation of GIRK channels, while the alphaMSH analog, MTII, had no effect on activity of NPY neurons. While initially NPY had similar effects on POMC neurons derived from ob/ob mice, further studies revealed a significant increase in desensitization of the NPY-induced currents in POMC neurons from ob/ob mice. This increase in desensitization was specific to NPY, as GABA(B) and microOR agonists showed unaltered desensitization in POMC neurons from ob/ob mice. These data reveal an intricate and asymmetric interplay between NPY and POMC neurons in the hypothalamus and have important implications for the delineation of the neural circuits that regulate feeding behavior.  相似文献   

17.
The endogenous opioid peptides have been implicated in mediating the actions of estrogen and progesterone on GnRH release. We used in situ hybridization histochemistry to determine whether steroid-induced changes in GnRH/LH release in the female sheep are associated with changes in the cellular mRNA content of the precursors for beta-endorphin (pro-opiomelanocortin; POMC) and met-enkephalin (pre-proenkephalin; PENK). Two specific hypotheses were tested. First, that the inhibitory actions of progesterone are associated with an increase in opioid gene expression in specific hypothalamic nuclei. Our data support this hypothesis. Thus, an increase in progesterone was associated with increased POMC gene expression in the arcuate nucleus and PENK in the paraventricular nucleus. Further, the increase in POMC was restricted to regions of the arcuate nucleus that contain steroid sensitive beta-endorphin neurons. Our second hypothesis, that gene expression for the two opioid precursors would decrease prior to the start of the estradiol-stimulated GnRH surge, was not supported. Rather, POMC (but not PENK) gene expression in the arcuate nucleus was significantly higher in estradiol-treated animals than controls at the peak of the GnRH surge. These data suggest that beta-endorphin neurons in subdivisions of the arcuate nucleus and enkephalin neurons in the paraventricular nucleus are part of the neural network by which progesterone inhibits LH release. While enkephalin neurons may not play a role in estrogen positive feedback, increases in POMC mRNA in the arcuate nucleus at the time of the GnRH peak may be important for replenishing beta-endorphin stores and terminating estrous behavior.  相似文献   

18.
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.  相似文献   

19.
20.
King CM  Hentges ST 《PloS one》2011,6(10):e25864
Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号