首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue-specific gene ablation is accomplished by combining conventional gene targeting approaches with site-specific recombinases such as the Cre/loxP system. Despite the use of a cardiac-specific rat myosin light chain II promoter, our transgenic line (CRE3) had little or no Cre expression in the heart; however, strong Cre activity was detected in the brain as early as gestation day E11.5. This was determined by several methods including crossing our mouse line with a lacZ indicator line (ROSA26). Transgenic Cre, in this mouse line, mediated DNA recombination of loxP-flanked genes selectively in neurons throughout the gray matter of the brain, cerebellum, spinal cord, as well as retina, dorsal, and sympathetic ganglia. Cre protein was also detected by immunohistochemistry exclusively in neurons, but not in other types of cells or tissues. Thus, our transgenic CRE3 mice provide pan-neuronal expression of CRE for carrying out conditional deletion of genes in neurons and their progenitors.  相似文献   

2.
The Connexin-40 (Cx40) gene encodes a gap junction protein that plays an important role in cell-cell communication in cardiomyocytes of the atria and cardiac conduction system and endothelial cells of large arteries. During embryonic development, Cx40 expression is tightly regulated and correlates with progressive ventricular conduction system (VCS) differentiation and vessel function. We have generated Cx40(Cre) mice carrying a CreERT2-IRESmRFP cassette by targeted recombination. In Cx40(Cre) mice, the pattern of expression of RFP is identical to that of the endogenous Cx40 gene and a Cx40(GFP) allele. Using a LacZ-based Cre reporter mouse line, tamoxifen dependent Cre recombination was observed throughout the spatio-temporal profile of Cx40 expression in the VCS and arterial endothelial cells. Cx40(Cre) mice can therefore be used to direct inducible genetic modification in Cx40 expressing cells.  相似文献   

3.
Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae, and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non‐neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization, and genome manipulation in these populations. genesis 47:765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Tcf21 is a Class II bHLH family member with essential roles in the formation of the lungs, kidneys, gonads, spleen, and heart. Here, we report the utility of a mouse line with targeted insertion of a tamoxifen-inducible Cre recombinase, MerCreMer at the Tcf21 locus. This mouse line will permit the inducible expression of Cre recombinase in Tcf21-expressing cells. Using ROSA26 reporter mice, we show that Cre recombinase is specifically and robustly activated in multiple Tcf21-expressing tissues during embryonic and postnatal development. The expression profile in the kidney is particularly dynamic with the ability to cause recombination in mesangial cells at one time of induction and podocytes at another time. These features make the Tcf21-driven inducible Cre line (Tcf21(iCre) ) a valuable genetic tool for spatiotemporal gene function analysis and lineage tracing of cells in the heart, kidney, cranial muscle, and gonads.  相似文献   

6.
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Cre/LoxP-mediated DNA recombination allows for gene function and cell lineage analyses during embryonic development and tissue regeneration. Here, we describe the derivation of a K19(CreERT) mouse line in which the tamoxifen-activable CreER(T) was knocked into the endogenous cytokeratin 19 locus. In the absence of tamoxifen, leaky Cre activity could be detected only in less than 1% of stomach and intestinal epithelial cells, but not in pancreatic or hepatic epithelial tissues. Tamoxifen administration in postnatal animals induced widespread DNA recombination in epithelial cells of pancreatic ducts, hepatic ducts, stomach, and intestine in a dose-dependent manner. Significantly, we found that Cre activity could be induced in the putative gut stem/progenitor cells that sustained long-term gut epithelial expression of a Cre reporter. This mouse line should therefore provide a valuable reagent for manipulating gene activity and for cell lineage marking in multiorgans during normal tissue homeostasis and regeneration.  相似文献   

8.
9.
We have evaluated the specificity of Cre recombinase activity in transgenic mice expressing Cre under the control of the synatonemal complex protein 1 (Sycp1) gene promoter. Sycp1Cre mice were crossed with the ROSA26 reporter line R26R, to monitor the male germ cell stage-specificity of Cre activity as well as to verify that Cre was not active previously during development of other tissues. X-gal staining detected Cre-mediated recombination only in testis. Detailed histological examination indicated that weak Cre-mediated recombination occurred as early as in zygotene spermatocytes at stage XI of the cycle of the seminiferous epithelium. Robust expression of X-gal was detected in early to mid-late spermatocytes at stages V-VIII. We conclude that this transgenic line is a powerful tool for deleting genes of interest specifically during male meiosis.  相似文献   

10.
Cell type-specific genetic modification using the Cre/loxP system is a powerful tool for genetic analysis of distinct cell lineages. Because of the exquisite specificity of Vasa expression (confined to the germ cell lineage in invertebrate and vertebrate species), we hypothesized that a Vasa promoter-driven transgenic Cre line would prove useful for the germ cell lineage-specific inactivation of genes. Here we describe a transgenic mouse line, Vasa-Cre, where Cre is efficiently and specifically expressed in germ cells. Northern analysis showed that transgene expression was confined to the gonads. Cre-mediated recombination with the Rosa26-lacZ reporter was observed beginning at approximately e15, and was >95% efficient in male and female germ cells by birth. Although there was a potent maternal effect with some animals showing more widespread recombination, there was no ectopic activity in most adults. This Vasa-Cre transgenic line should thus prove useful for genetic analysis of diverse aspects of gametogenesis and as a general deletor line.  相似文献   

11.
The success of Cre-mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre-transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre-mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.  相似文献   

12.
Transgenic mouse lines expressing Cre recombinase in a cell-specific and tissue-specific manner are essential tools for studying gene function and for developing suitable models for human diseases. Here, we used an expression cassette containing the full 5' untranslated region of the porcine insulin gene to generate a mouse line expressing Cre recombinase specifically in pancreatic β-cells by pronuclear DNA microinjection. We obtained a founder animal that transmitted the construct to its descendants in a Mendelian fashion and whose descendants showed a clear activation of β-galactosidase expression in pancreatic β-cells after crossing into the ROSA26 lacZ reporter mouse line. Cre expression in other organs was negative except for the kidney, intestine, and the cerebral pons where β-galactosidase activity was detected in a small percentage of the cells. This new mouse line is a valuable tool for recombination of floxed alleles in pancreatic β-cells in vivo.  相似文献   

13.
The Cre/LoxP system provides a powerful tool to investigate gene function in vivo. This system requires Cre-recombinase expressing mouse lines that permit control of gene recombination in a tissue-specific and time-dependent manner. To allow spatio-temporal gene deletion in specific central nervous system (CNS) neuronal populations, we generated mice with a tamoxifen-inducible Cre (Cre-ER(T)) transgene under control of the Scl/Tal1 neural promoter/enhancer -0.9E3 (-0.9E3CreER(T) transgenic mice). Using Cre-reporter mice we have shown that tamoxifen-mediated Cre-ER(T) recombination in -0.9E3CreER(T) mice recapitulated the anticipated expression pattern of Scl in the caudal thalamus, midbrain, hindbrain, and spinal cord. Cre-mediated recombination was also effectively induced during embryogenesis and marked the same population of neurons as observed in the adult. Additionally, we identified a tamoxifen-independent constitutively active -0.9E3CreER(T) mouse line that will be useful for gene deletion during early neurogenesis. These -0.9E3CreER(T) mice will provide tools to investigate the role of neuronal genes in the developing and mature CNS. CNS.  相似文献   

14.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

15.
Wnt signaling regulates cortical and hippocampal development. In a previous study we found that a particular Wnt receptor, Frizzled9 (Fzd9), was selectively expressed in both the developing and adult hippocampus. Taking advantage of the specificity of this promoter, we generated a transgenic cre mouse line using the putative control elements of the Fzd9 gene. In the Fzd9‐cre mice, Cre is mainly detected in the developing cortex and hippocampus and is confined to the CA fields and dentate gyrus in adults. Furthermore, by crossing the Fzd9‐cre mouse with the ROSA26 reporter line, we examined the activity of Cre and found that it has very high recombination efficiency. Thus, this mouse line will likely prove to be a useful tool for studying cortical and hippocampal development via activation or inactivation of interesting genes. genesis 48:343–350, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Zhao Z  Hou N  Sun Y  Teng Y  Yang X 《遗传学报》2010,37(9):647-652
Parietal cells are one of the largest epithelium cells of the mucous membrane of the stomach that secrete hydrochloric acid.To study the function of gastric parietal cells during gastric epithelium homeostasis,we generated a transgenie mouse line,namely,Atp4b-Cre,in which the expression of Cre recombinase was controlled by a 1.0 kb promoter of mouse β-subunit of H+-,K+-ATPase gene(Atp4b).In order to test the tissue distribution and excision activity of Cre recombinase in vivo,the Atp4b-Cre transgenic mice were bred with the reporter strain ROSA26 and a mouse strain that carries Smad4 conditional alleles(Smad4Co/Co).Multiple-tissue PCR of Atp4b-Cre;Smad4Co/+mice revealed that the recombination only happened in the stomach.As indicated by LacZ staining,ROSA26;Atp4b-Cre double transgenic mice showed efficient expression of Cre recombinase within the gastric parietal cells.These results showed that this Atp4b-Cre mouse line could be used as a powerful tool to achieve conditional gene knockout in gastric parietal cells.  相似文献   

17.
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .  相似文献   

18.
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.  相似文献   

19.
20.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号