首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microwave irradiation (MWIr) of tissues immersed in aldehydes has been used to preserve fine structure in seconds. The purpose of this study was to extend these findings to include rapid primary osmium fixation in a microwave (MW) device with a high volume exhaust. Blocks of rat heart and liver were trimmed to approximately 4 mm3 and exposed to 0.2 M symcollidine-buffered 2% osmium tetroxide for a period of 6-7 sec during MWIr (final solution temperature approximately 45 degrees C). We also evaluated rapid fixation of tissues exposed to MWIr simultaneously with immersion in dilute Karnovsky's fixative (6-7 sec to approximately 50 degrees C) followed by MWIr of specimens immersed in osmium (7 sec to approximately 45 degrees C). Tissues were stored in 0.1 M sodium cacodylate buffer (pH 7.3, 4 degrees C) up to 2 weeks and were stained en bloc in uranyl acetate, dehydrated in a graded series of alcohols, and embedded in propylene oxide-Epon sequence. Thin sections were stained with lead citrate and examined by transmission electron microscopy. We demonstrate that fine structural preservation of tissue blocks can be achieved by MWIr in aldehyde and/or osmium in seconds.  相似文献   

2.
Liver tissue from miniature pig fetuses was immersion-fixed in fixative mixtures with various concentrations of formaldehyde and glutaraldehyde. The preservation quality of hepatocytes was evaluated ultrastructurally in a peripheral zone (30--130 micron below the surface) and a central zone (500 micron below the surface). In the peripheral zone the best preservation was obtained with a fixative mixture containing 2% formaldehyde and 2% glutaraldehyde and in the central zone with a fixative mixture containing 8% formaldehyde and 8% glutaraldehyde. It is concluded that a better utilization of fairly large tissue blocks for ultrastructural investigation can be obtained by division of the block and subsequent fixation in fixatives containing various concentrations of formaldehyde and glutaraldehyde.  相似文献   

3.
Our aim was to define optimal conditions for efficient and reproducible albumin mRNA detection in rat liver by in situ hybridization. We used an albumin-specific [3H]-labeled cDNA probe with a specific activity of 6-8.10(6) cpm/microgram DNA. In situ hybridization is as efficient on paraffin sections as on cryostat sections for detecting albumin mRNAs. Perfusion fixation with a 4% paraformaldehyde solution results in homogeneous RNA retention within tissue blocks, in contrast with immersion fixation, which yields heterogeneous RNA preservation. Comparison of immersion fixation with three different fixatives (paraformaldehyde, ethanol-acetic acid, and Bouin's fixative) shows that the highest level of hybridization signal is obtained with paraformaldehyde. Ethanol-acetic acid and Bouin's fixative appear less efficient for albumin mRNA detection. Loss of mRNAs within liver tissue blocks over time is largely although not completely prevented by paraffin embedding.  相似文献   

4.
We tested various fixation and analysis methods to demonstrate by electron microscopy elemental imaging in tissues and cells, i.e., soluble substances such as many kinds of ionic elements, water soluble low molecular peptides, and even organic solvent soluble substances such as lipids. For the ionic elements, we tested frozen dried or freeze-substituted methods and organic or inorganic special chemical precipitation methods combined with microwaved fixation methods. The data were analyzed with electron beam X-ray microanalysis, electron energy filtered imaging analysis, and electron microscope autoradiography. The data were demonstrated as elemental distribution images and were calculated quantitatively. For the soluble low molecular peptides, we developed a tannic acid and aldehyde method combined with microwaved fixation. We discuss the theoretical background of the tannic acid fixation and microwaved fixation methods. For the organic solvent soluble substances, i.e., lipids including steroids, we successfully tested the use of a mixed fixative of aldehyde and osmium, digitonization, and osmification with the use of p-phenylendiamine or imidazole. We also proposed some new ideal biotracers for electron beam X-ray microanalysis and electron energy filtered imaging analysis.  相似文献   

5.
H G Heumann 《Histochemistry》1992,97(4):341-347
Microwave-enhanced fixation of animal tissues for electron microscopy has gained in interest in recent years. Attempts to use microwave irradiation for the preparation of plant tissues are rare. In this study; I report on microwave conditions which allow a high quality preservation of plant cell structure. Tissues used were: internodes of Chara vulgaris, leaves of Hordeum vulgare, root tips of Lepidium sativum. Microwave irradiation was done with a commercial microwave oven (Sharp R-5975). Fixatives used were: 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 and 1% osmium tetroxide in veronal/acetate buffer, pH 7.2. Conventional fixations with glutaraldehyde/osmium were compared with microwave fixations. Examinations of thin sections showed that microwave fixation (glutaraldehyde or sequential aldehyde/osmium) is an attractive and rapid alternative method for processing plant tissues for electron microscopy. The optimal conditions found were: microwave oven at power level 50 W, 6.5 ml of fixative solution, irradiation times between 32-34 s, final temperature between 40 degrees C and 47 degrees C.  相似文献   

6.
The effects of aldehyde fixatives on immunochemical detection of cytoskeletal proteins were demonstrated by applying several quantitative assays to evaluate antigen conservation. Immunologically detectable brain spectrin (240/235) was measured by dot-immunobinding and quantitative immunodot assay using a polyclonal antibody. Paraformaldehyde fixation led to a 43-66% reduction in brain spectrin (240/235) immunodetection, and increasing glutaraldehyde concentrations decreased the immunological detection even more. Quantitative cryosection immunoassay and immunocytochemical localization confirmed the aldehyde sensitivity of brain spectrin (240/235). Brain spectrin (240/235) immunoreactivity decreased with increasing protein crosslinking and was dependent on glutaraldehyde concentration and post-fixation period. The assays were also used to test for conservation of antigenicity of neurofilament proteins by two monoclonal antibodies. Neurofilament detection was abolished in brain tissue after aldehyde fixation. The described methods allow screening within 24 hr of many fixation conditions by use of purified proteins as well as brain tissue samples, and allow an estimate of fixative influence on the conservation of protein antigenicity.  相似文献   

7.
S Reitamo 《Histochemistry》1978,55(3):197-207
The preservation of lysozyme (LZM) antigenicity was studied in paraffin embedded tissue blocks. The reactivity for LZM varied with the type of tissue studied, the fixative used, the osmolarity and pH of the fixative, fixation time and temperature, and the method of dehydration. In both rat and human tissues aqueous fixatives were superior to nonaqueous fixatives in retaining LZM antigenicity. Brief fixation in fixatives of low osmolarity enhanced LZM staining in the parenchymatous tissues but diminished staining in human cartilage; prolonged fixation in fixatives of high osmolarity gave opposite results. Least affected by fixation was the LZM antigenicity in the serous cells of the glands of the respiratory tract. These cells also stained most intensely for LZM of all autopsy material studied.  相似文献   

8.
We developed an ELISA-based method for rapid optimization of various tissue processing parameters in immunogold labeling for electron microscopy. The effects of aldehyde fixation, tannic acid, postfixation, dehydration, temperature, and antigen retrieval on antibody binding activity of Vitreoscilla hemoglobin (VHb) expressed in E. coli cells were assayed by ELISA and the results confirmed by quantitative immunogold labeling transmission electron microscopy (TEM). Our results demonstrated that low concentrations (0.2%) of glutaraldehyde fixation caused minimal loss in total binding compared to higher concentrations. Dehydration in up to 70% ethanol resulted in some distortion of cellular ultrastructure but better antibody binding activity compared to dehydration up to 100%. Postfixation or incorporation of tannic acid in the primary fixative caused almost total loss of activity, whereas antigen retrieval of osmium-postfixed material resulted in approximately 90-100% recovery. The sensitivity of detection of proteins by immunogold labeling electron microscopy depends on the retention of antibody binding activity during tissue processing steps, e.g., fixation and dehydration. Our study indicated that an ELISA-based screening method of various tissue processing procedures could help in rapid selection and optimization of a suitable protocol for immunogold localization and quantification of antigen by TEM.  相似文献   

9.
In a series of neurohistochemical experiments the effect of aldehyde fixation upon the detection of horseradish peroxidase (HRP) was examined. These experiments demonstrated that: a) Increments in fixation of as little as 1 hr significantly decreased the number of labeled neurons; 12-hr fixation abolished HRP activity in many neuronal populations and significantly reduced the apparent size of the injection site. b) This negative fixation effect was greatest where the HRP concentration was low (e.g. in small, lightly labeled neurons) but was still evident in areas of high concentration (e.g. large, heavily labeled neurons). c) This effect was also most prominent when a less sensitive diaminobenzidine histochemical procedure was employed but was still apparent with a more sensitive benzidine dihydrochloride procedure. d) Immersion of the brain in fixative after perfusion produced a greater attenuation of HRP activity in more superficial areas. e) Immersion of the brain in buffer to terminate fixation produced a prolonged and unpredictable gradient of fixation. f) Excess, unbound fixative inhibited the histochemical reaction per se and had to be removed from the tissue but prolonged washing did not resurrect enzyme activity which was lost by fixation. To obviate these problems and optimize HRP enzyme activity a new perfusion-fixation procedure was developed. It entails 30 min fixation by perfusion which is terminated by a subsequent 30 min perfusion with cold sucrose-fuller to wash out unbound fixative. This allows the tissue to be processed immediately, produces a uniform and morphologically adequate fixation, and minimizes the negative effects of fixation on HRP enzyme activity.  相似文献   

10.
11.
Summary The preservation of lysozyme (LZM) antigenicity was studied in paraffin embedded tissue blocks. The reactivity for LZM varied with the type of tissue studied, the fixative used, the osmolarity and pH of the fixative, fixation time and temperature, and the method of dehydration. In both rat and human tissues equeous fixatives were superior to nonaqueous fixatives in retaining LZM antigenicity. Brief fixation in fixatives of low osmolarity enhanced LZM staining in the parenchymatous tissues but diminished staining in human cartilage; prolonged fixation in fixatives of high osmolarity gave opposite results. Least affected by fixation was the LZM antigenicity in the serous cells of the glands of the respiratory tract. These cells also stained most intensely for LZM of all autopsy material studied.Studies supported by grants from the Sigrid Jusélius Foundation and Finska Läkaresällskapet  相似文献   

12.
The effect of aldehyde fixation on concentrations of low molecular weight constituents was determined by comparing amounts of selected intermediates in brains of mice exposed to aldehyde fixative solutions with those perfused with phosphate buffer solution alone. Aldehyde perfusion resulted in excellent preservation of cerebral cortex ultrastructure in the presence of dramatic declines in adenosine triphosphate, phosphocreatine, glucose and glucose-6-phosphate that occureed before exposure of the tissue to aldehyde fixatives. Decreases in hexose were accompanied by approximately a 4-fold increase in lactate and a 2-fold increase in pyruvate. Glycogen levels decreased by about 60% during the initial operative procedure but remained constant after aldehyde fixation. Glycogen content declined approximately 90% in tissues that were not treated with aldehyde. Concentrations of aspartate and glutamate changed only slightly during the initial period (1-5 min) and remained constant for at least 90 min in cerebral cortices fixed with aldehydes. Alanine levels increased in both fixed and unfixed tissue; however, this increase was much smaller in tissues exposed promptly to aldehydes. Total ninhydrin-positive material in perchloric acid extracts of brain decreased in mice exposed to aldehyde solutions but increased in tissues that were not. These results indicated that several amino acids may be measured reliably in tissues preserved for light and electron microscopy. In addition, determination of glutamate: alanine ratios in tissues perfused with aldehydes may provide an indication of the timing of fixation.  相似文献   

13.
In an attempt to clarify whether or not glutaraldehyde molecules contribute to the effective osmotic pressure of the fixative solution the ultrastructure of noncultured and in vitro-cultured day 1, 3 and 4 rabbit embryos was evaluated. Total osmolarity of the fixative solution (200-800 mosm) was only varied by changing the aldehyde concentration, whereas the vehicle osmolarity (145 mosm) remained unchanged. Optimum preservation in all embryonic stages was obtained when total osmolarity of the fixative solution was 285-340 mosm. Higher (480-800 mosm) or lower (250 mosm) osmolarities of the fixative solution led to alterations mainly in mitochondria and smooth-surfaced endoplasmic reticulum. Shrinkage of cells and condensation of the cytoplasm occurred only occasionally. Compared with early cleavage stage embryos blastocysts were generally more susceptible to hyperton and hypoton fixative solutions. In vitro culture for 24 h per se did not have any influence on the fixation.  相似文献   

14.
Leaves of desiccated ‘resurrection plants’,Selaginellalepidophylla, were hydrated either through the roots of intactplants or as isolated organs. Air-dry tissue and samples at1, 4, 8 and 24 h (both detached and intact) of hydration wereprepared for electron microscopy using aldehyde fixatives ofdifferent osmotic strengths. Both dry and hydrated tissues werealso prepared using freeze substitution. Significant differencesin the ultrastructural preservation of these different sampleswere noted. There was a direct correlation between the osmolalityof both the fixative and the tissue with the quality of ultrastructuralpreservation. When the osmolality of the fixative was slightly(or even considerably) higher than that of the tissue, optimalpreservation was achieved. Freeze substitution, however, gavethe most faithful preservation of all subcellular compartments,despite the frequent presence of small ice crystals. Additionally,hydration of detached leaves for more than 4 h resulted in swellingdamage of the organelles and cytoplasm, regardless of the fixationprotocol. Broadly interpreted, the results of this study indicate thatan optimal preservation of plant cell and organelle ultrastructurecan be achieved by the use of high osmolality fixatives or,preferably, freeze substitution. These results are also importantin determining the method of hydration of poikilohydric samplesfor physiological studies and for interpretation of functionalchanges as related to the structural condition of the organelles.Copyright1997 Annals of Botany Company Selaginella; fixation; ultrastructure; dry; hydrated  相似文献   

15.
Fixation of mucus for the assessment of biofilms and surface associated pathogens often involves complex and expensive techniques. Rainbow trout killed by an overdose of MS 222 had their gills removed and immersion-fixed gently in buffered glutaraldehyde containing 2% Alcian blue. Control tissues consisted of gills fixed in Alcian blue-free fixative. Trout were also killed and directly immersed in liquid nitrogen and the gills freeze-dried then vapour fixed with osmium tetroxide at −50° C. Following fixation gill tissue was processed for light and electron microscopy. A continuous and intact mucous coat was not detected on tissue fixed by conventional methods but the addition of Alcian blue to the fixative preserved an extensive mucous coat trapped between the lamellae and overlying the epithelia. Electron microscopic examination revealed that mucus preservation with the conventional fixative was poor and intermittent whereas the addition of Alcian blue to the fixative greatly enhanced the preservation of the branchial mucous coat. Mucus appeared as interdispersed flocculant material between the epithelial microridges and formed extensive superficial sheets over the epithelium. Freeze-dried/vapour-fixed gill tissue also provides excellent preservation of the integrity of branchial mucous coats, the mucus appearing as a continuous sheet over the filament and secondary lamellae. However, freeze-dried tissue fails to preserve sufficient cellular integrity for this technique to be useful for light or transmission electron microscopy. The potential for use of glutaraldehyde-Alcian blue fixed-gill tissue diagnostically and in research are discussed.  相似文献   

16.
Conventional aldehyde based fixatives produce good morphological preservation. However, owing to their cross-linking mechanism of action, epitope loss may occur during fixation compromising the tissue for subsequent immunohistochemical (IHC) analysis. IHC is an important tool for characterizing antigen, cytokine and cytomorphological markers. The increasing use of mouse models for study of pathogenesis has highlighted the need to investigate alternative fixatives. In the study reported here, tissue samples from RIII mice with immune mediated lesions, Mycobacterium bovis infected mice, and uninfected control mice were fixed in either zinc salt fixative or buffered formalin, then tested for IHC using a panel of antibodies (CD3, CD4, CD8, CD45, CD54, F4/80, Interferon-gamma and MIP2). Zinc salt fixation preserved processing-sensitive murine cell markers (CD4, CD8 and CD54) and improved the intensity of immunolabeling for CD45, F4/80 and CD3. Buffered formalin failed to preserve any of the processing-sensitive murine epitopes for demonstration by subsequent IHC.  相似文献   

17.
Identification of biomarkers in archival tissues using immunochemistry is becoming increasingly important for determining the diagnosis and prognosis of tumors, for characterizing preinvasive neoplastic changes in glandular tissues such as prostate, for evaluating the response of tumors and preinvasive neoplastic changes to certain therapies (i.e., as a surrogate intermediate end point), for selecting patients who are candidates for specific therapies (e.g., immunotherapy) and for retrospective studies. For detecting specific biomarkers it is important to understand the limitations imposed by the fixation methods and processing of the tissues. This study was designed to determine the effects of fixation on the detection in archival paraffin blocks of selected antigens postulated to be important in tumor biology. We evaluated the antigens TGFα, p185erbB-2, broad spectrum keratins, p53, and TAG-72 (B72.3). Fixatives evaluated included standard preparations of neutral buffered formalin, acid formalin, zinc formalin, alcoholic formalin, ethanol, methanol, and Bouin's fixative. We found that in general neutral buffered formalin is the poorest fixative for maintaining antigen recognition by immunohistochemistry and that no single fixative was best for all antigens. The dehydrating (coagulant) fixatives (e.g., ethanol and methanol) preserved immunorecognition of p53 and broad spectrum keratins best while the slow cross-linking fixatives (e.g., unbuffered zinc formalin) were best for demonstrating TGFα and p185erbB-2. Fixatives other than neutral buffered formalin produced equivalent recognition of the epitope of TAG-72 by B72.3. In formalin fixed archival tissues, only a portion of the antigen signal can be detected by routine immunohistologic methods.  相似文献   

18.
While long-term fixation and storage of specimens is common and useful for many research projects, it is particularly important for space flight investigations where samples may not be returned to Earth for several months (International Space Station) or years (manned mission to Mars). We examined two critical challenges of space flight experimentation: the effect of long-term fixation on the quality of mouse bone preservation and the preservation of antigens and enzymes for both histochemical and immunohistochemical analyses, and how the animal/sample processing affects the preservation. We show that long-term fixation minimally affects standard histological staining, but that enzyme histochemistry and immunolabeling are greatly compromised. Further, we demonstrate that whole animal preservation is not as suitable as whole leg or stripped leg preservation for long-term fixation and all histological analyses. Overall, we recommend whole leg processing for long-term storage of bone specimens in fixative prior to embedding in plastic for histological examination.  相似文献   

19.
While long-term fixation and storage of specimens is common and useful for many research projects, it is particularly important for space flight investigations where samples may not be returned to Earth for several months (International Space Station) or years (manned mission to Mars). We examined two critical challenges of space flight experimentation: the effect of long-term fixation on the quality of mouse bone preservation and the preservation of antigens and enzymes for both histochemical and immunohistochemical analyses, and how the animal/sample processing affects the preservation. We show that long-term fixation minimally affects standard histological staining, but that enzyme histochemistry and immunolabeling are greatly compromised. Further, we demonstrate that whole animal preservation is not as suitable as whole leg or stripped leg preservation for long-term fixation and all histological analyses. Overall, we recommend whole leg processing for long-term storage of bone specimens in fixative prior to embedding in plastic for histological examination.  相似文献   

20.
Using Laser Microprobe Mass Analysis (LAMMA), we studied the chemical composition of lead-induced intranuclear inclusions in rat kidney tissue prepared by three different wet chemical fixation procedures for transmission electron microscopy. Fixation with glutaraldehyde-Na2S gave the same results as fixation with glutaraldehyde only: a high lead concentration could be detected. Therefore, for lead strongly bound to proteins, precipitation procedures are not essential. Post-fixation with osmium tetroxide drastically changed the composition of the inclusions: the lead concentration decreased substantially, while sodium, calcium, and barium were introduced. The osmium tetroxide fixative was found to be the source of the contamination. It also contained aluminum, and we suggest that other proteins (e.g., in neurofibrillary tangles) might be able to take up Al out of solution and that care must be exercised in interpreting the microanalytical results of osmium-fixed material. For the microanalysis of the lead inclusions, fixation with glutaraldehyde only provides a good compromise between preservation of the ultrastructure and maintenance of the element distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号