首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aflatoxin formation by Aspergillus flavus   总被引:19,自引:0,他引:19  
  相似文献   

2.
Aflatoxin formation by Aspergillus flavus.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

3.
Yields of from 200 to 300 mg per liter of aflatoxins B(1) and G(1) were produced by two strains of Aspergillus flavus in 20-liter fermentors under proper conditions of inoculum (well-dispersed growth) and aeration (0.5 volume per volume per min of air, 300 rev/min, 30 psi back pressure, baffles). Peak yields were usually attained in 72 hr, after which the aflatoxin concentration declined rapidly. Degradation of aflatoxin depended primarily on mycelial lysis and high-aeration conditions. Cultures previously reported not to degrade aflatoxin could be induced to do so under these conditions. The percentage and rate of toxin degradation were independent of toxin concentration, and appeared to be nonenzymatic and nonspecific. Degradation simulating that occurring in the fermentor was achieved by reacting aflatoxin with peroxidized methyl esters of vegetable oil; initial degradation was rapid and appeared to involve a complex series of reactions.  相似文献   

4.
5.
Immature fig fruits did not support colonization and aflatoxin production by Aspergillus flavus Lk. but became susceptible when ripe. While sun-drying on the tree, fruits were particularly vulnerable to fungal infection and colonization. Aflatoxin accumulation equaled levels frequently reported for such seeds as peanuts and cereal grains.  相似文献   

6.
A screening study of 121 fungus isolates, representing 29 species, for aflatoxin synthesis demonstrated this property only in Aspergillus flavus and A. parasiticus. Eight of the organisms found negative were isolates reported by other investigators to produce aflatoxin. Since similar negative reports have come from several other workers, it is concluded that only the A. flavus group of Aspergillus can presently be certified as sources of these toxins. Reasons for possible false-positive findings are discussed along with precautionary measures and differential analytical procedures useful in aflatoxin screening studies.  相似文献   

7.
8.
Levels of aflatoxin produced in peanuts differed with the genetic variety of plant and with the species and strain of invading fungus. Possibilities for identifying groundnut varieties partially resistant to aflatoxin production are discussed.  相似文献   

9.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

10.
Aspergillus flavus isolated from naturally infected leaf-eating caterpillar (Opisina arenosella W.), lace bug (Stephanitis typica D.) and plant hopper (Proutista moesta Westwood), insect pests of the coconut palm, were tested for aflatoxin (AT) production by employing various media formulations. These A. flavus isolates were earlier found to be entomopathogenic in laboratory bioassays. A laboratory contaminant and four standard aflatoxigenic A. flavus isolates were also included in this study as reference strains. All A. flavus isolates were tested on seven AT detection media: coconut extract agar, coconut extract-sodium desoxycholate agar, coconut extract-ascorbic acid agar, coconut extract-Czapek Dox agar, coconut extract-milk powder agar, 10% commercial coconut milk powder agar (CCMPA) and 20% CCMPA. Only two isolates of A. flavus, originally isolated from O. arenosella and P. moesta, produced ATs. AT production was detected within 48 h of incubation and was detected continually up to 1 month. These AT-producing A. flavus isolates also produced bright yellow pigmentation in the medium. Of all the seven media used for AT detection, CCMPA (10%) was found to be the best one, followed by 20% CCMPA, for direct and rapid AT detection. AT production was not necessary for pathogenicity in the insects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Aspergillus flavus ATCC 15517 produced up to 212 mg per liter of total aflatoxin in submerged culture in aerated (3,000, 6,000, 9,000, and 12,000 ml/min) and agitated medium in 14-liter fermentors with 10 liters of medium consisting of 2% yeast extract and 10% sucrose. Aflatoxin production increased with time. A maximum of 212 mg/liter was produced at 9,000 ml/min aeration, whereas the yield decreased substantially at the lower aeration rates. Two other strains of A. flavus synthesized aflatoxin in smaller quantities.  相似文献   

12.
An aflatoxin-producing isolate of Aspergillus flavus was found to be a consistent producer of aflatoxin on all substrates which supported the growth of the mold. In competition with six other selected molds, this isolate was dominant except with one species of Penicillium. Aflatoxin production was parallel to the extent of A. flavus growth whether effected by substrate or competition.  相似文献   

13.
Distribution of trace element levels in corn germ fractions from kernels naturally infected with Aspergillus flavus and from kernels free of the fungus demonstrated an association between the presence of A. flavus and higher levels of metals. A. flavus production of aflatoxin on various autoclaved corn media showed that ground, whole corn was an excellent substrate; similar high levels of toxin were observed on full-fat corn germ but endosperm and defatted corn germ supported reduced yields. The influence of trace elements and their availability in defatted corn germ to A. flavus-mediated aflatoxin biosynthesis were measured. Enrichment of the substrate with 5 to 10 mug of manganese, copper, cadmium, or chromium per g of germ increased toxin yields. Addition of lead or zinc (50 to 250 mug/g) also enhanced toxin accumulation. Aflatoxin elaboration was reduced by the addition of 25 mug of cadmium per g or 500 mug of copper per g of germ.  相似文献   

14.
15.
S ummary : Strains of Aspergillus flavus recently isolated from coconut products were cultured on grated coconut. The aflatoxin content of serial cultures was found to vary significantly with duration of incubation and for some strains to show more than one phase of increase of aflatoxin content. The occurrence of these variations indicates that the study of aflatoxigenic capacity of strains or of the capacity of a medium to support toxin production, should be based upon a knowledge of the pattern of variation of toxin content with duration of incubation of the cultures under the experimental conditions used. Assay of toxin level in a culture after one period of incubation could lead to erroneous conclusions about the identity or quantities of toxin components which the strain is able to produce.  相似文献   

16.
17.
18.
19.
Accumulation of Only Aflatoxin B2 by a Strain of Aspergillus flavus   总被引:3,自引:2,他引:1       下载免费PDF全文
A strain of Aspergillus flavus isolated from ground black pepper produced only aflatoxin B(2) on several natural substrates.  相似文献   

20.
Peanuts, cottonseed, rice, and sorghum from Texas were sampled over a 3-year period. To insure adequate isolation of alfatoxin-producing species of fungi, low-quality lots were sampled at a rate greater than their respective proportional representation. Aflatoxins were found each year in peanut and cottonseed and were found in 2 of 3 years in rice and sorghum. Aflatoxins were detected in all four crops. The Aspergillus flavus group was much more prevalent in peanut and rice than in cottonseed and sorghum. Of the isolates of the A. flavus group, 96% from peanuts, 79% from cottonseed, 49% from sorghum, and 35% from rice produced aflatoxins. The average toxin production of isolates from rice was much less than that from peanuts, cottonseed, or sorghum. More than 90% of all isolates of the A. flavus group were identified as the species A. flavus. A. parasiticus was isolated from all four crops. Only A. parasiticus produced aflatoxin G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号