首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been claimed that the sole H(2)O(2)-scavenging system in the cyanobacterium Synechococcus sp. PCC 7942 is a cytosolic catalase-peroxidase. We have measured in vivo activity of a light-dependent peroxidase in Synechococcus sp. PCC 7942 and UTEX 625. The addition of small amounts of H(2)O(2) (2.5 microM) to illuminated cells caused photochemical quenching (qP) of chlorophyll fluorescence that was relieved as the H(2)O(2) was consumed. The qP was maximal at about 50 microM H(2)O(2) with a Michaelis constant of about 7 microM. The H(2)O(2)-dependent qP strongly indicates that photoreduction can be involved in H(2)O(2) decomposition. Catalase-peroxidase activity was found to be almost completely inhibited by 10 microM NH(2)OH with no inhibition of the H(2)O(2)-dependent qP, which actually increased, presumably due to the light-dependent reaction now being the only route for H(2)O(2)-decomposition. When (18)O-labeled H(2)O(2) was presented to cells in the light there was an evolution of (16)O(2), indicative of H(2)(16)O oxidation by PS 2 and formation of photoreductant. In the dark (18)O(2) was evolved from added H(2)(18)O(2) as expected for decomposition by the catalase-peroxidase. This evolution was completely blocked by NH(2)OH, whereas the light-dependent evolution of (16)O(2) during H(2)(18)O(2) decomposition was unaffected.  相似文献   

2.
The katG gene coding for the only catalase-peroxidase in the cyanobacterium Synechocystis sp. strain PCC 6803 was deleted in this organism. Although the rate of H2O2 decomposition was about 30 times lower in the DeltakatG mutant than in the wild type, the strain had a normal phenotype and its doubling time as well as its resistance to H2O2 and methyl viologen were indistinguishable from those of the wild type. The residual H2O2-scavenging capacity was more than sufficient to deal with the rate of H2O2 production by the cell, estimated to be less than 1% of the maximum rate of photosynthetic electron transport in vivo. We propose that catalase-peroxidase has a protective role against environmental H2O2 generated by algae or bacteria in the ecosystem (for example, in mats). This protective role is most apparent at a high cell density of the cyanobacterium. The residual H2O2-scavenging activity in the DeltakatG mutant was a light-dependent peroxidase activity. However, neither glutathione peroxidase nor ascorbate peroxidase accounted for a significant part of this H2O2-scavenging activity. When a small thiol such as dithiothreitol was added to the medium, the rate of H2O2 decomposition in the DeltakatG mutant increased more than 10-fold, indicating that a thiol-specific peroxidase, for which thioredoxin may be the physiological electron donor, is present. Oxidized thioredoxin is likely to be reduced again by photosynthetic electron transport. Therefore, under laboratory conditions, there are only two enzymatic mechanisms for H2O2 decomposition present in Synechocystis sp. strain PCC 6803. One is catalyzed by a catalase-peroxidase, and the other is catalyzed by thiol-specific peroxidase.  相似文献   

3.
The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 must detoxify plant-produced hydrogen peroxide (H(2)O(2)) in order to survive in its host plant. Candidate enzymes for this detoxification include the monofunctional catalases KatB and KatE and the bifunctional catalase-peroxidase KatG of DC3000. This study shows that KatG is the major housekeeping catalase of DC3000 and provides protection against menadione-generated endogenous H(2)O(2). In contrast, KatB rapidly and substantially accumulates in response to exogenous H(2)O(2). Furthermore, KatB and KatG have nonredundant roles in detoxifying exogenous H(2)O(2) and are required for full virulence of DC3000 in Arabidopsis thaliana. Therefore, the nonredundant ability of KatB and KatG to detoxify plant-produced H(2)O(2) is essential for the bacteria to survive in plants. Indeed, a DC3000 catalase triple mutant is severely compromised in its ability to grow in planta, and its growth can be partially rescued by the expression of katB, katE, or katG. Interestingly, our data demonstrate that although KatB and KatG are the major catalases involved in the virulence of DC3000, KatE can also provide some protection in planta. Thus, our results indicate that these catalases are virulence factors for DC3000 and are collectively required for pathogenesis.  相似文献   

4.
We isolated and characterized a gene encoding phosphoribulokinase (PRK) from Synechococcus sp. PCC 7942. The isolated sequence consisted of a 999 bp open reading frame encoding 333 amino acid residues of PRK. The PRK contained a pair of cysteinyl residues corresponding to Cys16 and Cys55 of spinach PRK regulated by a ferredoxin-thioredoxin system. However, there were seventeen amino acid residues lacking between the two cysteinyl residues compared with those of the chloroplastic enzyme in higher plants. The recombinant PRK of Synechococcus sp. PCC 7942 accounted for about 6-13% of the total soluble protein in the Escherichia coli. The specific activity of the enzyme was 230 micro mol min(-1) (mg protein)(-1). The enzyme activity was completely inactivated by treatment with 5,5'-dithiobis (2-nitrobenzoic acid) (cysteinyl residue-specific oxidant) or was decreased by treatment with H(2)O(2), but was more tolerant to oxidation than that of chloroplast. The oxidized PRK was fully activated by treatment with excessive dithiothreitol. Furthermore, incubation with 3 mM ATP protected the oxidation of the enzyme by either 5,5'-dithiobis (2-nitrobenzoic acid) or H(2)O(2). These results suggest Synechococcus sp. PCC 7942 PRK can be regulated by reversible oxidation/reduction in vitro, but might be resistant to oxidative inactivation in vivo.  相似文献   

5.
Synechococcus sp. strains PCC 7942 and PCC 6301 contain a 35 kDa protein called IdiA (Iron deficiency induced protein A) that is expressed in elevated amounts under Fe deficiency and to a smaller extent also under Mn deficiency. Absence of this protein was shown to mainly damage Photosystem II. To decide whether IdiA has a function in optimizing and/or protecting preferentially either the donor or acceptor side reaction of Photosystem II, a comparative analysis was performed of Synechococcus sp. PCC 7942 wild-type, the IdiA-free mutant, the previously constructed PsbO-free Synechococcus PCC 7942 mutant and a newly constructed Synechococcus PCC 7942 double mutant lacking both PsbO and IdiA. Measurements of the chlorophyll fluorescence and determinations of Photosystem II activity using a variety of electron acceptors gave evidence that IdiA has its main function in protecting the acceptor side of Photosystem II. Especially, the use of dichlorobenzoquinone, preferentially accepting electrons from QA, gave a decreased O2 evolving activity in the IdiA-free mutant. Investigations of the influence of hydrogen peroxide treatment on cells revealed that this treatment caused a significantly higher damage of Photosystem II in the IdiA-free mutant than in wild-type. These results suggest that although the IdiA protein is not absolutely required for Photosystem II activity in Synechococcus PCC 7942, it does play an important role in protecting the acceptor side against oxidative damage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Liu XG  Zhao JJ  Wu QY 《FEBS letters》2005,579(21):4571-4576
Inactivation of the chlN gene in Synechocystis sp. PCC 6803 resulted in no chlorophyll and photosystems when the mutant was grown in darkness, providing an in vivo system to study the structure and function of phycobilisomes (PBSs). The effects of hydrogen peroxide (H2O2) and metal ions on the mutant PBSs in vivo were investigated by low temperature fluorescence emission measurement. H2O2 induced an obvious disassembly of the cores of PBSs and interruption of energy transfer from allophycocyanin to the terminal emitter. Among many metal ions only silver induced disassembly of the cores of PBSs. Our results demonstrated for the first time that the cores of PBSs act as targets in vivo for oxidative stress or silver induced damage.  相似文献   

7.
The isiAB genes have proven to be highly stress-responsive under a variety of environmental conditions, including iron deficiency, high salt and oxidative stress. In order to understand the function of IsiA and its importance in oxidative stress, we constructed a knock out mutant of the isiA gene and compared differential gene expression of the DeltaisiA strain in the presence and absence of H2O2. We used the full genome microarray for the cyanobacterium Synechocystis sp. PCC 6803 as previously described [Postier BL, Wang HL, Singh A, Impson L, Andrews, HL, Klahn J, Li H, Risinger G, Pesta D, Deyholos M, Galbraith DW, Sherman LA and Burnap RL (2003) BMC Genenomics 4: 23-34]. We determined that one of the main differences in DeltaisiA compared to wild-type (in the absence of peroxide) was the induction of a gene cluster (sll1693-sll1696) that encoded genes resembling pilins or general secretory proteins (Gsp). These proteins are targeted to the cytoplasmic membrane and we suggest that they may be involved in the assembly of membrane complexes, including pigment-protein complexes. The DeltaisiA strain was more resistant to H2O2 compared to the wild-type. In the presence of 1.5 mM H2O2 for 30 min, a cluster of genes that includes a peroxiredoxin was induced 7- to 8-fold and we suggest that this peroxide scavenging enzyme is responsible for the increased peroxide resistance of the DeltaisiA strain.  相似文献   

8.
In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942.  相似文献   

9.
A bentazone-resistant mutant of Synechococcus elongatus PCC7942, called Mu2, tolerated elevated NaCl concentrations. As bentazone and bromoxynil exhibit similar mechanism of action, we investigated whether the mutant also toleratedbromoxynil and found it to be true. The line of investigation was then whether the acclimation strategy for the three stressors, bentazone, bromoxynil and NaCl was same or different. The cellular contents of malondialdehyde, hydrogen peroxide and superoxide increased in wild type strain following all the treatments suggesting their toxicities due to oxidative response. Notwithstanding, there were apparently different anti-oxidative measures pertaining to the herbicide and salinity stress. Glutathione contents and activities of superoxide dismutase, catalase-peroxidase, glutathione S-transferase and glutathione reductase decreased under NaCl, whereas bromoxynil affected only glutathione S-transferase reductase. Moreover, in-gel assays revealed that bromoxynil promoted appearance of isozymes of catalase-peroxidase, while NaCl induced such response only for superoxide dismutase. On the other hand, in Mu2, glutathione peroxidase-reductase and glutathione showed upward trend after bromoxynil exposure, whereas NaCl raised peroxidase and superoxide dismutase. Proteome comparison revealed peroxiredoxin Q to be highly expressed in wild type strain under bromoxynil, whereas NaCl favoured flavodoxin over-expression. Their amounts were already high in Mu2. We suggest that Mu2 acclimatized to bromoxynil in a manner similar to bentazone by upgrading peroxiredoxin Q and glutathione peroxidase-reductase. Conversely, for NaCl it devised another mechanism involving peroxidase and superoxide dismutase, and flavodoxin.  相似文献   

10.
In this study, we attempted to characterize the Synechococcus sp. PCC 7942 mutant resultant from a disruption in the gene encoding UDP-glucose: tetrahydrobiopterin alpha-glucosyltransferase (BGluT). 2D-PAGE followed by MALDI-TOF mass spectrometry revealed that phycocyanin rod linker protein 33K was one of the proteins expressed at lower level in the BGluT mutant. BGluT mutant cells were also determined to be more sensitive to high light stress. This is because photosynthetic O2 exchange rates were significantly decreased, due to the reduced number of functional PSIs relative to the wild type cells. These results suggested that, in Synechococcus sp. PCC 7942, BH4-glucoside might be involved in photosynthetic photoprotection.  相似文献   

11.
12.
An ATP-dependent Ca2+ uptake activity was identified in plasma membrane vesicles prepared from Synechococcus sp. strain PCC 7942. This activity was insensitive to agents which collapse pH gradients and membrane potentials but sensitive to vanadate, indicating that the activity is catalyzed by a P-type Ca(2+)-ATPase. A gene was cloned from Synechococcus sp. strain PCC 7942 by using a degenerate oligonucleotide based on a sequence conserved among P-type ATPases. This gene (pacL) encodes a product similar in structure to eukaryotic Ca(2+)-ATPases. We have shown that pacL encodes a Ca(2+)-ATPase by demonstrating that a strain in which pacL is disrupted has no Ca(2+)-ATPase activity associated with its plasma membrane. In addition, Ca(2+)-ATPase activity was restored to the delta pacL strain by introducing pacL into a second site in the Synechococcus sp. strain PCC 7942 chromosome.  相似文献   

13.
We have developed a simple procedure for generating mutants of the cyanobacterium Synechococcus sp. strain PCC 7942 in which the site of the lesion can be readily identified. This procedure involves transforming Synechococcus sp. strain PCC 7942 with a library of its own DNA that was fully digested with Sau3A and ligated into the plasmid vector pUC8. The homologous integration of the recombinant plasmid into the genome will often result in the disruption of a gene and the loss of gene function. We have used this method to generate many mutants of Synechococcus sp. strain PCC 7942 which grow as multicellular filaments rather than as unicells. Since the gene harboring the lesion was tagged with pUC8, it was easily isolated. In this paper, we discuss the usefulness of this procedure for the generation of mutants, and we characterize one mutant in which the lesion may be in an operon involved in the assembly of lipopolysaccharides.  相似文献   

14.
Genome sequences of cyanobacteria, Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Thermosynechococcus elongatus BP-1 revealed the presence of a single Ca2+/H+ antiporter in these organisms. Here, we isolated the putative Ca2+/H+ antiporter gene from Synechocystis sp. PCC 6803 (synCAX) as well as a homologous gene from a halotolerant cyanobacterium Aphanothece halophytica (apCAX). In contrast to plant vacuolar CAXs, the full-length apCAX and synCAX genes complemented the Ca2+-sensitive phenotype of an Escherichia coli mutant. ApCAX and SynCAX proteins catalyzed specifically the Ca2+/H+ exchange reaction at alkaline pH. Immunological analysis suggested their localization in plasma membranes. The Synechocystis sp. PCC 6803 cells disrupted of synCAX exhibited lower Ca2+ efflux activity and a salt-sensitive phenotype. Overexpression of ApCAX and SynCAX enhanced the salt tolerance of Synechococcus sp. PCC 7942 cells. Mutagenesis analyses indicate the importance of two conserved acidic amino acid residues, Glu-74 and Glu-324, in the transmembrane segments for the exchange activity. These results clearly indicate that cyanobacteria contain a Ca2+/H+ antiporter in their plasma membranes, which plays an important role for salt tolerance.  相似文献   

15.
16.
Transposon Tn5-692 mutagenizes Synechococcus sp. strain PCC 7942 efficiently. The predicted product of the gene mutated in the Tn5-692-derived cell division mutant FTN2 has an N-terminal DnaJ domain, as have its cyanobacterial and plant orthologs. Anabaena sp. strain PCC 7120, when mutated in genes orthologous to ftn2 and ftn6, forms akinete-like cells.  相似文献   

17.
Inactivation of ccmO in Synechococcus sp. strain PCC 7942 resulted in a mutant which possesses aberrant carboxysomes and a normal inorganic carbon uptake capability but a reduced ability to photosynthetically utilize the internal inorganic carbon pool. Consequently, it exhibits low apparent photosynthetic affinity for extracellular inorganic carbon and demands high levels of CO(2) for growth.  相似文献   

18.
19.
Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp.  相似文献   

20.
Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H(2)O(2)) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H(2)O(2) resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H(2)O(2), but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号