首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively.  相似文献   

2.
A basic set of equations describing the flows of volume (Jv) and solute (Js) across a leaky porous membrane, coupled to the differences of osmotic and hydrostatic pressures d pi and dP has been derived by using general frictional theory. Denoting the mean pore concentration of solute by c*s and the hydraulic and diffusive conductances by Lp and Ps/RT the equations take the form Jv = LpdP + sigma sLp d pi Js = c*s(1 - sigma f)Jv + Ps d pi/RT sigma s = theta (1 - DsVs/DwVw - Ds/Dos) sigma f = 1 - theta DsVs/DwVw - Ds/Dos in which Dw and Ds are the diffusion coefficients for water and solute in the pore and Dos that for free solution. The relation between the reflection coefficients sigma s and sigma f for osmosis and ultrafiltration is then given by sigma s = sigma f - (1- theta)(1 - Ds/Dos), where theta is the diffusive-driven:pressure-driven flow ratio. These equations follow from the fact that in leaky pores osmosis occurs by diffusion alone and that there cannot be any Onsager symmetry leading to sigma s = sigma f. Symmetry holds in the limits where either the pore is small, when sigma s = sigma f = 1, or where the pore is large when sigma s = sigma f = 0.  相似文献   

3.
The aim of the present study was to quantify changes in human skeletal muscle pennation angle (F theta) values during growth and adult life. The human gastrocnemius medialis muscle of 162 subjects (96 males and 66 females) in the age range 0-70 years was scanned with ultrasonography. The subjects were laying prone, at rest, with the ankle maintained at 90 degrees with all muscles relaxed. F theta increased monotonically starting from birth (0 years) and reached a stable value after the adolescent growth spurt. There was a significant (p < 0.05) linear relationship between F theta and muscle thickness (TK). F theta = 0.84 (+/- 0.09) * TK + 3.15 (+/- 1.13). Human gastrocnemius medialis F theta and TK data found in the literature seem to fit the F theta-TK plot in a coherent manner, independent of the physiological or anatomical characteristics of the subject. The present findings indicate that F theta is not a constant parameter but evolves, as is the case for bone length and height, as a function of age.  相似文献   

4.
Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, <theta 2>1/2 (= 16 +/- 2 degrees at 34 degrees C), formed by the peptide helix axis and the average bilayer normal.  相似文献   

5.
19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).  相似文献   

6.
Nanosecond decays of the fluorescence anisotropy, r, were studied for the emission of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in a series of mixed multilamellar liposomes containing egg yolk phosphatidylcholine, phosphatidylethanolamine and cholesterol in varying molar ratios, as well as in membranes of intact cells and in virus envelopes. The relative contributions of the fast and the infinitely slow decaying component to the steady-state value r, of the fluorescence anisotropy were very similar for artifical and biological membranes. Angles, theta, of the cone, by which the motion of the fluorescent molecule is limited, were calculated from the intensity of the infinitely slow decaying anisotropy component and compared with steady-state fluorescence anisotropies and with 'microviscosities', (eta). An increase in (eta) from 1.5 to 5.2 P in our systems was accompanied by a decrease in theta from 49 degrees to 30 degrees while the decrease in the mean motional relaxation times, phi f, of the label molecule was not more than 1 ns and due mainly to changes in the potential, by which the diffusion of DPH in the membrane is restricted. From these observations we conclude that differences in the steady-state fluorescence anisotropy and in 'microviscosities' of cholesterol-containing membranes (r greater than 0.15) represent changes in the degree of static orientational constraint rather than changes in diffusion rates of the label.  相似文献   

7.
The theory of fluorescent emission anisotropy [r(t)] of a cylindrical probe in a membrane suspension is developed. It is shown, independent of any model, that the limiting anisotropy [r(infinity)] is proportional to the square to the order parameter of the probe. The order parameter determines the first nontrivial term in the expansion of the equilibrium orientational distribution function of the probe in a series of Legendre polynomials. Following Kinosita, Kawato, and Ikegami, the motion of the probe is described as diffusion ("wobbling") within a cone of semiangle theta 0. Within the framework of this model, an accurate single-exponential approximation for r(t) is considered. An analytic expression relating the effective relaxation time, which appears in the above approximation, to theta 0 and the diffusion coefficient for wobbling is derived. The model is generalized to the situation where the probe is attached to a macromolecule whose motion cannot be neglected on the time scale of the fluorescence experiment. Finally, by exploiting the formal similarity between the theory of fluorescence depolarization and 13C-NMR dipolar relaxation, expressions for T1, T2, and the nuclear Overhauser enhancement are derived for a protonated carbon which is nonrigidly attached to a macromolecule and undergoes librational motion described as diffusion on a spherical "cap" of semiangle theta 0.  相似文献   

8.
Singly dissected twitch fibers from frog muscle were studied on an optical bench apparatus after micro-injection with the pH indicator dye, phenol red. Dye-related absorbances in myoplasm, denoted by A0(lambda) and A90(lambda), were estimated as a function of wavelength lambda (450 nm less than or equal to lambda less than or equal to 640 nm) with light polarized parallel (0 degrees) and perpendicular (90 degrees) to the fiber axis respectively. At all lambda, A0(lambda) was slightly greater than A90(lambda), indicating that some of the phenol red molecules were bound to oriented structures accessible to myoplasm. The phenol red "isotropic" signal, [A0(lambda) + 2A90(lambda)]/3, a quantity equal to the average absorbance of all the dye molecules independent of their orientation, had a spectral shape that was red-shifted by approximately 10 nm in comparison with in vitro dye calibration curves measured in 140 mM KCl. The red-shifted spectrum also indicates that some phenol red molecules were bound in myoplasm. A quantitative estimate of indicator binding was obtained from measurements of the dye's apparent diffusion constant in myoplasm, denoted by Dapp. The small value of Dapp, 0.37 x 10(-6) cm2 s-1 (at 16 degrees C), can be explained if approximately 80% of the dye was bound to myoplasmic sites of low mobility. To estimate the apparent myoplasmic pH, denoted by pHapp, the isotropic absorbance of phenol red was fitted by in vitro calibration spectra. pHapp was found to be independent of dye concentration (0.2-2 mM), but varied widely (range, 6.8-7.5; mean value, 7.17) among fibers judged from functional characteristics to be normal. When fibers were subjected to acid or alkaline loads by exposure to Ringer's solution containing, respectively, dissolved CO2 or NH3, the changes in pHapp were in agreement with those expected from pH micro-electrode studies. It is concluded that in spite of the several indications for the presence of bound phenol red inside muscle cells, the pHapp signal from the indicator is useful for monitoring changes in myoplasmic pH in response to physiological and pharmacological manipulations.  相似文献   

9.
W L Vaz  R H Austin    H Vogel 《Biophysical journal》1979,26(3):415-426
A derivative of the integral membranes protein, cytochrome b5, has been prepared in which the native heme group has been replaced by the structurally similar rhodium(III)-protoporphyrin IX. This metalloporphyrin has a finite triplet yield with a single exponential decay time of 22 microsecond in water. After insertion of the metalloporphyrin into the protein, its triplet-state decay becomes strongly nonexponential with at least three equal amplitude components with time constants varying over a range of 100. The derivatized protein has been incorporated into unilamellar liposomes prepared from dimyristoyllecithin, and the rotational diffusion of the protein in the lipid bilayer has been studied at temperatures above and below the lipid phase transition temperature via triplet absorbance anisotropy decay. The anisotropy decay curves are biphasic both above and below the lipid phase transition. The rotational diffusion constant is found to be 2.4 X 10(5) s-1 at 35 degrees C, and 1.1 X 10(4) s-1 at 10 degrees C, both being calculated from the fast decay component. The ratio of the limiting anisotropy to the initial anisotropy is 0.6 at both temperatures. This implies a cone of restricted motion of 34 degrees for the protein in the bilayer.  相似文献   

10.
By dynamic light scattering, the intensity autocorrelation function, G2(tau) = B[1 + beta[g1(tau)[2], was obtained over the scattering angles (theta) from 30 to 130 degrees in steps of 10 degrees for semidilute solutions of muscle F-actin and of F-actin complexed with heavy meromyosin in the absence of ATP (acto-HMM), where B is the baseline and beta a constant. The main findings were: (1) A 0.5 mg/ml F-actin solution gave nonreproducible spectra at theta less than or equal to 40 degrees but quite reproducible spectra at theta greater than or equal to 50 degrees, with beta = 0.9-0.8 at all theta values. Nonreproducibility of spectra at low theta values was concluded to be due to restricted motions of very long filaments confined in cages or zig-zag tubing formed by a major fraction of filaments, where the very long filaments were those at a distant tail of an exponential length distribution and the major fraction of filaments were those with lengths around Ln-2Ln, Ln being the number-average length. Spectral widths were compared with theoretical ones for rigid rods averaged over the length distribution with Ln = 900 nm, and were suggested to be largely contributed at high theta values from bending motions of filaments. (2) Acto-HMM solutions at 0.5 mg/ml F-actin and at weight ratios of HMM to F-actin of 0.5-2 gave spectra which, with respect to theta, behaved very similarly to those of F-actin alone. The spectral widths, however, drastically decreased with the weight ratio up to unity and stayed virtually constant above unity. In contrast to a previous study (F.D. Carlson and A.B. Fraser, J. Mol. Biol. 89 (1974) 273), beta values of acto-HMM were as large as those of F-actin alone. Acto-HMM was concluded to travel a distance far greater than 1/K with a mobility smaller than that of F-actin, where K = (4 pi/lambda) sin(theta/2), lambda being the wavelength of light in the medium. These results suggest that acto-HMM gels are very soft even though they did not pour from an inverted cell. Based on several intuitive models which give a mutual relationship between the beta value and modes of motion of scatterers, we discuss the restricted motions responsible for nonreproducibility of spectra at low angles and large beta values of acto-HMM gels at all theta values and weight ratios so far studied.  相似文献   

11.
Fluorescence photobleaching recovery (FPR) was measured to determine the diffusion coefficient of fluorescein-labeled G-actin in low-salt buffer. The result obtained, 7.15 +/- 0.35 X 10(-7) cm2/s, is in good agreement with that computed from the molecular weight, partial specific volume, and sedimentation coefficient, but is higher than previously obtained values. It is demonstrated from theory that at low ionic strength, the electrostatic contribution to the intrinsic viscosity leads to an overestimate of the hydrodynamic eccentricity of G-actin. Data from FPR, sedimentation, and fluorescence polarization experiments all indicate that the true low-salt form of the actin monomer has an axial ratio less than or equal to 3.0. The G-F transformation of actin was also observed by measurement of FPR during the assembly phase, in the steady state, and in the presence of ligands such as cytochalasin and aldolase. Each FPR record in general yields three data: relative proportion of rapidly and slowly diffusing actin, diffusion coefficient for the high-mobility fraction, and a mean diffusion coefficient for the low-mobility fraction. A relation between the mean low-mobility diffusion coefficient and the number-average filament length is derived and applied to the analysis of FPR data. Under typical conditions, the average filament length was much greater than 10 micron in the steady state. Cytochalasin D was found to decrease filament length and total amount of filament proportionally; total filament number was not greatly affected. In all polymerizations of G-actin, the high-mobility material observed in situ was found to be essentially monomeric actin. Relatively stable oligomers of actin were separated by fractionating G-AF-actin by gel filtration in 50 microM MgCl2 at 4 degrees C. On the basis of the diffusion coefficient, we conclude that monomer and dimer constitute the major particle types present under these conditions. Sedimentation of labeled actin polymerized in 1.0 mM MgCl2 yielded a graded supernatant that contained actin oligomers significantly larger than the monomer.  相似文献   

12.
Connectin (titin) is a large filamentous protein (single peptide) with a molecular mass of approximately 3 MDa, contour length approximately 900 nm, and diameter approximately 4 nm, and resides in striated muscle. Connectin links the thick filaments to the Z-lines in a sarcomere and produces a passive elastic force when muscle fiber is stretched. The aim of this study is to elucidate some aspects of physical properties of isolated beta-connectin (titin 2), a proteolytic fragment of connectin, by means of dynamic light-scattering (DLS) spectroscopy. The analysis of DLS spectra for beta-connectin gave the translational diffusion coefficient of 3.60 x 10(-8) cm2/s at 10 degrees C (or the hydrodynamic radius of 44.1 nm), molecular mass little smaller than 3.0 MDa (for a literature value of sedimentation coefficient), the root-mean-square end-to-end distance of 163 nm (or the radius of gyration of 66.6 nm), and the Kuhn segment number of 30 and segment length of 30 nm (or the persistence length of 15 nm). These results permitted to estimate the flexural rigidity of 6.0 x 10(-20) dyn x cm2 for filament bending, and the elastic constant of 7 dyn/cm for extension of one persistence length. Based on a simple model, implications of the present results in muscle physiology are discussed.  相似文献   

13.
Capillary orientation (anisotropy) was compared in hindlimb muscles of mammals of different size and/or different aerobic capacity (dog, goat, pony, and calf). All muscles were fixed by vascular perfusion at sarcomere lengths ranging from 1.5 to 2.7 micron. The ratios of capillary counts per fiber cross-sectional area on two sets of sections (0 and 90 degrees) to the muscle fiber axis were used to estimate capillary anisotropy and the coefficient c(K,0) relating 1) capillary counts on transverse sections (a commonly used parameter to assess muscle capillarity) and 2) capillary length per volume of fiber (i.e., capillary length density). Capillary orientation parallel to the muscle fiber axis decreased substantially with muscle fiber shortening. In muscles fixed at sarcomere lengths of 2.69 microns (dog vastus intermedius) and 1.52 microns (dog gastrocnemius), capillary tortuosity and branching added 7 and 64%, respectively, to capillary length density. The data obtained in this study are highly consistent with the previously demonstrated relationship between capillary anisotropy and sarcomere length in extended vs. contracted rat muscles, by use of the same method. Capillary anisotropy in mammalian locomotory muscles is curvilinearly related to sarcomere length. No systematic difference was found in capillary tortuosity with either body size, athletic ability, or aerobic capacity. Capillary tortuosity is a consequence of fiber shortening rather than an indicator of the O2 requirements of the tissue.  相似文献   

14.
The rotational mobility of the phosphate translocator from the chloroplast envelope and of lipid molecules in the membrane of unilamellar azolectin liposomes has been investigated. The rotational dynamics of the liposome membrane were investigated by measuring the rotational diffusion of eosin-5-isothiocyanate(EITC)-labeled L-alpha-dipalmitoylglycerophosphoethanolamine (Pam2 GroPEtn) in the lipid phase of the vesicles, either in the presence or absence of the reconstituted phosphate translocator. The temperature dependence of the anisotropy decay showed that above 25 degrees C the main contribution to the anisotropy decay was caused by uniaxial anisotropic rotation of the labelled lipid molecules around the axis normal to the membrane plane. The rate of rotation of the labelled lipid molecules was strongly dependent on the viscosity of the medium (eta 1). Extrapolation to eta 1 = 0 Pa.s yielded a correlation time of phi = 20 +/- 5 ns, t = 30 degrees C, for lipid rotation with respect to the membrane normal. The rotational diffusion coefficient of the lipid molecules was calculated to be Dr = 2.0 x 10(9) rad2.s-1 and the apparent microviscosity in the vesicle membrane, as derived from the rotational correlation time, was eta 2 approximately 12 mPa.s. The rotational correlation time of the phosphate translocator in the membrane was only slightly dependent on the viscosity of the medium. The temperature dependence of the protein rotation also indicated that the rotation of the protein in the membrane was largely restricted and occurred mainly about the axis normal to the membrane plane. Measurements at a medium viscosity of eta 1 = 1 mPa.s yielded a value of phi r approximately 450 ns corresponding to Dr = 8.8 x 10(7) rad2.s-1 for protein rotation with respect to the membrane normal. From this value and the data of the lipid rotation, the cross-sectional area of the protein part embedded in the membrane was calculated to be approximately 9 nm2. This cross-sectional area is large enough to include at most 14 membrane-spanning helices. Our results also indicated that at lipid/protein molar ratios greater than or equal to 1.5 x 10(4): 1 aggregation occurred in the model membranes below 30 degrees C. However, above 30 degrees C and at a high dilution of the protein in the membrane it appeared that the membrane viscosity monitored by lipid and protein rotational diffusion were identical.  相似文献   

15.
We have simulated both conventional (V1) and saturation transfer (V'2) electron paramagnetic resonance spectra for the case of Brownian rotational diffusion restricted in angular amplitude. Numerical solutions of the diffusion-coupled Bloch equations were obtained for an axially symmetric 14N nitroxide spin label with its principal axis rotating within a Gaussian angular distribution of full width delta theta at half maximum. Spectra were first calculated for a macroscopically oriented system with cylindrical symmetry (e.g., a bundle of muscle fibers or a stack of membrane bilayers), with the Gaussian angular distribution centered at theta 0 with respect to the magnetic field. These spectra were then summed over theta 0 to obtain the spectrum of a randomly oriented sample (e.g., a dispersion of myofibrils or membrane vesicles). The angular amplitude delta theta was varied from 0 degrees, corresponding to isotropic motion (order parameter = 0). For each value of delta theta, the rotational correlation time, tau r, was varied from 10(-7) to 10(-2) s, spanning the range from maximal to minimal saturation transfer. We provide plots that illustrate the dependence of spectral parameters on delta theta and tau r. For an oriented system, the effects of changing delta theta and tau r are easily distinguishable, and both parameters can be determined unambiguously by comparing simulated and experimental spectra. For a macroscopically disordered system, the simulated spectra are still quite sensitive to delta theta, but a decrease in tau r produces changes similar to those from an increase in delta theta. If delta theta can be determined independently, then the results of the present study can be used to determine tau r from experimental spectra. Similarly, if tau r is known, then delta theta can be determined.  相似文献   

16.
《The Journal of cell biology》1983,96(5):1400-1413
Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three- dimensional network resembling the peripheral cytoskeleton of motile cells.  相似文献   

17.
From knee extension moments measured with a dynamometer, the quadriceps muscle force, the patellar ligament force and the reaction force in the patellofemoral joint at various knee angles (0-90 degrees) were estimated. The information needed to calculate the combined effect of both patellofemoral and tibiofemoral joint on the mechanical advantage of the muscle was obtained from lateral-view radiographs of autopsy knees. The results show that the smallest quadriceps force (2,000 N) is exerted at maximal extension, and the largest force (8,000 N) at about 75 degrees of flexion. The patellar ligament force reaches a maximum (5,000 N) at 60 degrees. The reaction force in the patellofemoral joint is the smallest (1,000 N) at extension and is of the same values as the muscle force in a range from 75 to 90 degrees. Especially at large flexion angles, the value of the estimated forces is considerably larger (by 100%) than reported in the literature. This difference is attributed to the influence of the patellofemoral joint on the mechanical advantage of the muscle, which has not been taken into account in other studies.  相似文献   

18.
The dynamic light scattering (DLS) method provides us with information about the apparent diffusion coefficient, Dapp, as well as the static scattering intensity, Is, of particles in solution. For long but thin rods with length L and diameter d, the dependence on L and d of Dapp is quite different from that of Is. By means of DLS we studied synthetic myosin filaments of rabbit skeletal muscle in solution at pH 8.3 and 10 degrees C. It appeared that Mg2+ ions induced thickening and lengthening of the filaments, whereas ATP (and ADP) induced thinning and shortening (depolymerization) of the filaments. When ATP was added to the filament preparation in the presence of Mg2+ ions, it was clearly observed that thinning of the filament (or splitting into subfilaments) occurred before shortening (or depolymerization).  相似文献   

19.
Propulsive forces generated by swimmers hand/forearm, have been studied through experimental tests. However, there are serious doubts as to whether forces quantified in this way are accurate enough to be meaningful. In order to solve some experimental problems, some numerical techniques have been proposed using Computational Fluid Dynamics (CFD). The main purpose of the present work was threefold. First, disseminate the use of CFD as a new tool in swimming research. Second, apply the CFD method in the calculation of drag and lift coefficients resulting from the numerical resolution equations of the flow around the swimmers hand/forearm using the steady flow conditions. Third, evaluate the effect of hand/forearm acceleration on drag and lift coefficients. For these purposes three, two-dimensional (2D), models of a right male hand/forearm were studied. A frontal model (theta = 90 degrees, Phi = 90 degrees) and two lateral models, one with the thumb as leading edge (theta = 0 degrees, = 90 degrees), and the other with the small finger as the leading edge (theta = 0 degrees, Phi = 180 degrees). The governing system of equations considered was the incompressible Reynolds averaged Navier-Stokes equations with the standard k-epsilon model. The main results reported that, under the steady-state flow condition, the drag coefficient was the one that contributes more for propulsion, and was almost constant for the whole range of velocities, with a maximum value of 1.16 (Cd = 1.16). This is valid when the orientation of the hand/forearm is plane and the model is perpendicular to the direction of the flow. Under the hand /forearm acceleration condition, the measured values for propulsive forces calculation were approximately 22.5% (54.440 N) higher than the forces produced under the steady flow condition (44.428 N). By the results, pointed out, we can conclude that: (i) CFD can be considered an interesting new approach for hydrodynamic forces calculation on swimming, (ii) the acceleration of hand/forearm provides more propulsion to swimmers, confirming that some unsteady mechanism must be present in swimming propulsion.  相似文献   

20.
The apparent translational diffusion coefficients of four 20 base pair (bp) DNA oligonucleotides with different sequences have been measured by capillary electrophoresis, using the stopped migration method. The diffusion coefficients of the four oligomers were equal within experimental error, and averaged (120 +/- 10) x 10(-8) cm(2) s(-1) in 40 mM Tris-acetate-EDTA buffer at 25 degrees C. Since this value is nearly identical to the translational diffusion coefficient determined for a different 20-bp oligomer using other methods, the stopped migration method can accurately measure the diffusion coefficients of small DNA oligomers. The apparent diffusion coefficient of a 118-bp DNA restriction fragment was also measured by the stopped migration method. However, the observed value was approximately 25% larger than expected from other measurements, possibly because the diffusion coefficients of larger DNA molecules are somewhat dependent on the ionic strength of the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号