首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herbivory is typically intense in marine littoral environments; thus, macrophytes are expected to evolve defenses against grazing. Although putative defenses of macrophytes are widely studied, there is lack of studies demonstrating the main premises of defense adaptations: the consequences of herbivory to macrophytes, genetic variation of defense traits and the costs and benefits of defenses in natural environment. We conducted a factorial experiment, where we manipulated amount of herbivory, growing depth and nutrient availability, and measured resistance to herbivory as well as genetic variation and costs of phlorotannins, putative defensive secondary metabolites, in the brown alga Fucus vesiculosus . Herbivory on algae varied with depth: grazing did not cause losses close to the surface, but, most of the algal production was consumed at the deeper end of the algal belt. The higher the genotypic phlorotannin content the less damage the genotype received implying that phlorotannins acted as a resistance trait. Production of phlorotannins was associated with costs for growth. Consistent with the prediction that the cost of defense will be greatest when resources are limiting, the cost appeared only in the deep end of the algal belt where growth was slowed down. Phlorotannins displayed phenotypic plasticity; the three factors influenced phlorotannins interactively, with the main tendencies of nutrient enrichment decreasing and herbivory and increasing depth increasing phlorotannins. Despite this plasticity, variation of phlorotannins was mainly due to the genotype of algae. These results emphasize the role of herbivory as a selective agent for algal defenses and the importance of genetic variation in the constitutive level of phlorotannins in interactions with natural enemies. The cost of phlorotannins may constrain the evolution of resistance in environments where growth is limited by light availability.  相似文献   

2.
Increase of phenolic secondary metabolites, phlorotannins, in brown algae due to gastropod grazing has been interpreted as an anti-herbivore adaptation. Here we tested whether such a response could be due to changes in truly available resources for the alga, not by the grazing activity of snails as such. We allowed two species of snails, Theodoxus fluviatilis and Physa fontinalis to graze on Fucus vesiculosus . These species feed on epibiota and particulate matter on the thallus but do not eat the thallus of F. vesiculosus . We further simulated snail grazing by nutrient enhancement, removal of epibiota and by a combination of the two. Manipulations of nutrient and light availability revealed the crucial role of epibiota in mediating resource availability for F. vesiculosus . Nutrient enhancement alone increased epibiota and decreased phlorotannins. Cleaning the thallus resulted in increased growth, and together with nutrient enhancement also in a trade-off with phlorotannins. Presence of T. fluviatilis on the thallus induced phlorotannin production, a response differing from the simulations of snail grazing. However, we suggest that the increase in phlorotannins may not be an induced defense but rather a consequence of a specific way of resource manipulation by this snail species. T. fluviatilis removes hyaline hairs that facilitate nutrient uptake. P. fontinalis did not remove hyaline hairs and the response of the alga to its grazing was similar to the treatment where we mechanically removed epibiota suggesting that cleaning of the thallus is the major mechanism how this snail species affects F. vesiculosus . Genetic variation in phlorotannin concentrations highly exceeded the induced responses of simulated or real snail grazing. This casts doubt for the efficiency of induced phlorotannin production to act as a defense, but is not contradictory with the interpretation of phlorotannins responding to variation in resource availability.  相似文献   

3.
Genetic variation in single traits, including those closely related to fitness, is pervasive and generally high. By contrast, theory predicts that several forms of selection, including stabilizing selection, will eliminate genetic variation. Stabilizing selection in natural populations tends to be stronger than that assumed in theoretical models of the maintenance of genetic variation. The widespread presence of genetic variation in the presence of strong stabilizing selection is a persistent problem in evolutionary genetics that currently has no compelling explanation. The recent insight that stabilizing selection often acts most strongly on trait combinations via correlational selection may reconcile this problem. Here we show that for a set of male call properties in the cricket Teleogryllus commodus, the pattern of multivariate stabilizing sexual selection is closely associated with the degree of additive genetic variance. The multivariate trait combinations experiencing the strongest stabilizing selection harbored very little genetic variation while combinations under weak selection contained most of the genetic variation. Our experiment provides empirical support for the prediction that a small number of trait combinations experiencing strong stabilizing selection will have reduced genetic variance and that genetically independent trait combinations experiencing weak selection can simultaneously harbor much higher levels of genetic variance.  相似文献   

4.
There are now thousands of estimates of phenotypic selection in natural populations, resulting in multiple synthetic reviews of these data. Here we consider several major lessons and limitations emerging from these syntheses, and how they may guide future studies of selection in the wild. First, we review past analyses of the patterns of directional selection. We present new meta-analyses that confirm differences in the direction and magnitude of selection for different types of traits and fitness components. Second, we describe patterns of temporal and spatial variation in directional selection, and their implications for cumulative selection and directional evolution. Meta-analyses suggest that sampling error contributes importantly to observed temporal variation in selection, and indicate that evidence for frequent temporal changes in the direction of selection in natural populations is limited. Third, we review the apparent lack of evidence for widespread stabilizing selection, and discuss biological and methodological explanations for this pattern. Finally, we describe how sampling error, statistical biases, choice of traits, fitness measures and selection metrics, environmental covariance and other factors may limit the inferences we can draw from analyses of selection coefficients. Current standardized selection metrics based on simple parametric statistical models may be inadequate for understanding patterns of non-linear selection and complex fitness surfaces. We highlight three promising areas for expanding our understanding of selection in the wild: (1) field studies of stabilizing selection, selection on physiological and behavioral traits, and the ecological causes of selection; (2) new statistical models and methods that connect phenotypic variation to population demography and selection; and (3) availability of the underlying individual-level data sets from past and future selection studies, which will allow comprehensive modeling of selection and fitness variation within and across systems, rather than meta-analyses of standardized selection metrics.  相似文献   

5.
Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.  相似文献   

6.
7.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

8.
Abstract. We investigate maintenance of quantitative genetic variation at mutation-selection balance for multiple traits. The intrinsic strength of real stabilizing selection on one of these traits denoted the "target trait" and the observed strength of apparent stabilizing selection on the target trait can be quite different: the latter, which is estimable, is much smaller (i.e., implying stronger selection) than the former. Distinguishing them may enable the mutation load to be relaxed when considering multivariate stabilizing selection. It is shown that both correlations among mutational effects and among strengths of real stabilizing selection on the traits are not important unless they are high. The analysis for independent situations thus provides a good approximation to the case where mutant and stabilizing selection effects are correlated. Multivariate stabilizing selection can be regarded as a combination of stabilizing selection on the target trait and the pleiotropic direct selection on fitness that is solely due to the effects of real stabilizing selection on the hidden traits. As the overall fitness approaches a constant value as the number of traits increases, multivariate stabilizing selection can maintain abundant genetic variance only under quite weak selection. The common observations of high polygenic variance and strong stabilizing selection thus imply that if the mutation-selection balance is the true mechanism of maintenance of genetic variation, the apparent stabilizing selection cannot arise solely by real stabilizing selection simultaneously on many metric traits.  相似文献   

9.
Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.  相似文献   

10.
Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade‐offs with other fitness‐related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade‐offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)‐like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO‐like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community.  相似文献   

11.
Measurement of natural selection on correlated characters provides valuable information on fitness surfaces, patterns of directional, stabilizing, or disruptive selection, mechanisms of fitness variation operating in nature, and possible spatial variation in selective pressures. We examined effects of seed weight, germination date, plant size, early growth, and late growth on individual fitness. Path analysis showed that most characters had direct or indirect effects on individual fitness, indicating directional selection. For most early life-cycle characters, indirect effects via later characters exceed the direct causal effect on fitness. Selection gradients were uniform across the experimental site. There was no evidence for stabilizing or disruptive selection. We discuss several definitions of stabilizing and disruptive selection. Although early events in the life of an individual have important causal effects on subsequent characters and fitness, there is no detectable genetic variance for most of these characters, so little or no genetic response to natural selection is expected.  相似文献   

12.
Evolutionary theory has emphasized that the evolution of single traits cannot be understood in isolation when pleiotropy is present. Widespread pleiotropy causes the appearance of stabilizing selection on metric traits owing to joint effects with fitness, and results in the genetic variation being concentrated in relatively few combinations of the measured traits. In this review, we show how trait combinations with high levels of genetic variation can be used to uncover fitness optima that are defined by apparent stabilizing selection. Defining fitness optima in this way could provide one avenue by which researchers can overcome the problem posed by measuring the myriad of traits that must influence fitness, or by measuring total fitness itself.  相似文献   

13.
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.  相似文献   

14.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

15.
Variation in life‐history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life‐history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system.  相似文献   

16.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   

17.
Parasites present a threat for free‐living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade‐offs between immune function and life‐history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade‐offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.  相似文献   

18.
Patterns of selection were measured in populations of the perennial grass Danthonia spicata from a successional gradient in northern lower Michigan for a five-year period. Phenotypic variation was found both within and among populations for morphological, reproductive, and life-history traits. Two fitness components were measured: fecundity (total number of spikelets produced) and mortality (number of years an individual lived). Multiple-regression analysis of relative reproductive effort (percentage of culms that flowered), culm length, and leaf length against fitness showed substantial variation in the magnitude and direction of selection among the populations and among the fitness components. When three other reproductive traits were added to the analysis, there were no qualitative changes in estimates of directional selection coefficients, but there were pronounced changes in estimates of stabilizing/disruptive selection components. Patterns of selection were concordant with previously measured genetic changes in reproductive effort along the successional gradient but not concordant with genetic changes in culm length and leaf length. These same patterns were found in comparisons of Michigan and North Carolina populations.  相似文献   

19.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

20.
Telonis-Scott M  McIntyre LM  Wayne ML 《Genetica》2005,125(2-3):211-222
In Drosophila melanogaster, ovariole number and thorax length are morphological characters thought to be associated with fitness. Maximum daily egg production in females is positively correlated with ovariole number, while thorax length is correlated with male reproductive success and female fecundity. Though both traits are related to fitness, ovariole number is likely to be under stabilizing selection, while thorax length appears to be under directional selection. Current research has focused on examining the sources of variation for ovariole number in relation to fitness, with a view towards elucidating how segregating variation is maintained in natural populations. Here, we utilize a diallel design to explore the genetic architecture of ovariole number and thorax length in nine isogenic lines derived from a natural population. The full diallel design allows the estimation of general combining ability (GCA), specific combining ability (SCA), and also describes variation due to reciprocal effects (RGCA and RSCA). Ovariole number and thorax length differed with respect to their genetic architecture, reflective of the independent selective forces acting on the traits. For ovariole number, GCA accounted for the majority (67.3%) of variation segregating between the lines, with no evidence of reciprocal effects or inbreeding depression; SCA accounted for a small percentage (3.9%) of the variance, suggesting dominance variation; no reciprocal effects were observed. In contrast, for thorax length, the majority of the non-error variance was accounted for by SCA (17.9%), with only one third as much variance (6.2%) due to GCA. Interestingly, RSCA (nuclear–extranuclear interactions) accounted for slightly more variation (7.5%) than GCA in these data. Thus, genetic variation for thorax length is largely in accord with predictions for a fitness trait under directional selection: little additive genetic variation and substantial dominance variation (including a suggestion of inbreeding depression); while the mechanisms underlying the maintenance of variation for ovariole number are more complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号