首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

2.
We drained the amniotic fluid surrounding guinea pig fetuses between days 45 and 65 of gestation (term is 67 days). The fetuses were delivered by Cesarean section and the impact of prolonged oligohydramnios on lung growth, maturation and postnatal ventilatory pattern was measured. Untouched littermate fetuses served as controls. Neither fetal body, liver nor brain weights were significantly affected by the experimental situation. When expressed in percent of control values, lung weight (63%), lung/body weight ratio (70%), lung volume (67%), total lung DNA content (63%) and lung DNA per gram of fetal weight (71%) were all significantly less following amniotic fluid drainage, confirming the diagnosis of lung hypoplasia. Disaturated phosphatidylcholine content per gram of lung tissue and total lung glycogen content were not affected by the procedure, indicating that the maturity of the hypoplastic lungs was not delayed. When measured 4 to 6 hours after birth, tidal volume was significantly less (62%) and respiratory frequency was significantly more (137%); however, minute ventilation per unit of body weight was not significantly changed. This animal model of sublethal lung hypoplasia could become useful to study the potential for, and the kinetics of, postnatal catch-up lung growth about which little is known.  相似文献   

3.
Clinical and laboratory observations show that denial of free communication between the amniotic fluid and lung fluid results in pulmonary hypoplasia. Thus, cleft palate resulting from tongue obstruction to palatal shelf elevation might be associated with disturbed lung development. This association exists in the Pena-Shokeir phenotype. The goal of these experiments was to see what effect bromodeoxyuridine (BUdR)-induced cleft palate had on lung development. LACA mice were injected with 500 mg/kg BUdR on E11 or E11 and E12 of gestation, a treatment known to produce a 25% and 50% incidence of cleft palate, respectively. BUdR had a direct retarding effect on lung growth but, when cleft palate occurred as well, the lungs were more severely affected. Morphometry showed that lungs from fetuses with cleft palate had only one-half the saccular volume of controls or of treated fetuses with normal palates. Although hypoplastic, lungs associated with cleft palate had type I and type II pneumocytes, and the latter were shown by electron microscopy to be capable of producing surfactant. Hence, cellular differentiation had not been affected by the treatment. Fetuses with cleft palate had less amniotic fluid than controls but significantly more than those with normal palates after treatment. Thus, the pattern of abnormalities in this animal model bears some resemblance to that of the human Pena-Shokeir phenotype.  相似文献   

4.
Oligohydramnios commonly leads to fetal lung hypoplasia, but the mechanisms are not fully understood. Our aim was to determine, in fetal sheep, the effects of prolonged oligohydramnios on the incidence and amplitude of tracheal pressure fluctuations associated with fetal breathing movements (FBM), on tracheal flow rate during periods of FBM (VtrFBM) and periods of apnea (Vtrapnea), on tracheal pressure relative to amniotic sac pressure, and on amniotic sac pressure relative to atmospheric pressure. In five sheep, oligohydramnios was induced by draining amniotic and allantoic fluids from 107 to 135 days of gestation (411.8 +/- 24.4 ml/day), resulting in fetal lung hypoplasia. In five control sheep, amniotic fluid volume was 732.3 +/- 94.4 ml. Oligohydramnios increased the incidence of FBM by 14% at 120 and 125 days and the amplitude of FBM by 30-34% at 120-130 days compared with controls. From 120 days onward, VtrFBM was 35-55% lower in experimental fetuses than in controls. Influx of lung liquid during FBM was 87% lower in experimental fetuses than in controls. Vtrapnea, tracheal pressure, and amniotic sac pressure were not significantly altered by oligohydramnios. Our tracheal flow rate data suggest that transient changes in lung liquid volume during periods of FBM and periods of apnea were diminished by oligohydramnios. We conclude that the primary factor in the etiology of oligohydramnios-induced lung hypoplasia is not an inhibition of FBM (as measured by tracheal pressure fluctuations) or a reduction in amniotic fluid pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Reduced amniotic fluid volume often results in fetal lung hypoplasia. Our aim was to examine the effects of prolonged drainage of amniotic and allantoic fluids on lung liquid volume (Vl), secretion rate (Vs), and tracheal flow rate (Vtr) in fetal sheep. In five experimental animals, amniotic and allantoic fluids were drained from 107 to 135 days of gestation. The volume of fluid drained from the experimental animals was 411.8 +/- 24.4 ml/day (n = 140). In six control animals, amniotic fluid volume was 747.7 +/- 89.7 ml (n = 15). Wet and dry lung weights were 20-25% lower in experimental fetuses than in control fetuses. Fetal hemoglobin, O2 saturation, arterial PO2, pH, and hematocrit were unchanged by drainage. During the drainage period, Vl was up to 65% lower, Vs was up to 35% lower, and Vtr was up to 40% lower in experimental fetuses than in control fetuses. We conclude that prolonged drainage of amniotic and allantoic fluids decreases Vl, Vs, and Vtr in fetal sheep. These findings indicate that fetal lung hypoplasia associated with oligohydramnios may be the result of a prolonged reduction in Vl.  相似文献   

6.
Growth of the fetal lung   总被引:1,自引:0,他引:1  
Pulmonary hypoplasia occurs consistently when thoracic volume is reduced by any of a variety of congenital and acquired disorders and supports the hypothesis that distension of the fetal lung is necessary for normal growth. Many of these disorders also impair fetal breathing movements suggesting that growth is dependent on phasic as well as tonic forces. Results of animal experiments to test the hypothesis by obstructing or facilitating outflow of lung fluid are inconclusive but interrupting breathing movements by upper motor neurone lesions that preserve diaphragmatic tone causes hypoplasia. Episodes of breathing may distend the lungs by retaining secreted lung fluid while single breaths may redistribute fluid within the lungs.  相似文献   

7.
To test the hypothesis that activity of respiratory muscles determines regional growth of lung parenchyma, we studied the effects of unilateral diaphragmatic paralysis on contralateral/ipsilateral lung growth in cats and piglets. Five 10- to 12-wk-old cats and five 8-wk-old piglets underwent unilateral diaphragmatic paralysis by thoracic and cervical phrenectomy, respectively. Five to seven weeks after surgery, when the cats were killed for studies of lung growth, gain in body weight was the same as in five sham-operated controls. At this time, mean pleural pressure ipsilateral to the paralyzed hemidiaphragm was the same as contralateral mean pleural pressure during tidal breathing, and values did not differ from controls. However overall functional residual capacity was lower in the phrenectomized cats (35 +/- 4 ml) than in the controls (55 +/- 11 ml, P less than 0.01). Growth of contralateral lungs relative to ipsilateral lungs was greater in the phrenectomized cats than in the controls, as shown by ratios of contralateral/ipsilateral wet lung weight (1.44 vs. 1.34, P less than 0.01), maximum inflation volume (1.53 vs. 1.33, P less than 0.05), and total protein content (1.45 vs. 1.26, P less than 0.05). Ratios of total protein to DNA and RNA to DNA were unchanged. One week after surgery in the piglets, the ratio of contralateral/ipsilateral wet lung weight was increased (1.61 vs. 1.29, P less than 0.01) and total weight of both lungs was reduced. We conclude that regional growth of lung parenchyma by cell proliferation depends in part on regional distribution of respiratory muscle activity.  相似文献   

8.
Shallow‐diving, coastal bottlenose dolphins (Tursiops truncatus) and deep‐diving, pelagic pygmy and dwarf sperm whales (Kogia breviceps and K. sima) will experience vastly different ambient pressures at depth, which will influence the volume of air within their lungs and potentially the degree of thoracic collapse they experience. This study tested the hypotheses that lung size will be reduced and/or thoracic mobility will be enhanced in deeper divers. Lung mass (T. truncatus, n = 106; kogiids, n = 18) and lung volume (T. truncatus, n = 5; kogiids, n = 4), relative to total body mass, were compared. One T. truncatus and one K. sima were cross‐sectioned to calculate lung, thoracic vasculature, and other organ volumes. Excised thoraxes (T. truncatus, n = 3; kogiids, n = 4) were mechanically manipulated to compare changes in thoracic cavity shape and volume. Kogiid lungs were half the mass and one‐fifth the volume of those of similarly sized T. truncatus. The lungs occupied only 15% of the total thoracic cavity volume in K. sima and 37% in T. truncatus. The kogiid and dolphin thoraxes underwent similar changes in shape and volume, although the width of the thoracic inlet was relatively constrained in kogiids. A broader phylogenetic comparison demonstrated that the ratio of lung mass to total body mass in kogiids, physeterids, and ziphiids was similar to that of terrestrial mammals, while delphinids and phocoenids possessed relatively large lungs. Thus, small lung size in deep‐diving odontocetes may be a plesiomorphic character. The relatively large lung size of delphinids and phocoenids appears to be a derived condition that may permit the lung to function as a site of respiratory gas exchange throughout a dive in these rapid breathing, short‐duration, shallow divers. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Oligohydramnios frequently leads to lung hypoplasia in the fetus, but the underlying mechanisms are incompletely understood. Our aim was to determine the effects of oligohydramnios on the dimensions of the fetal thorax. Using pairs of implanted ultrasound transducers in 6 fetal sheep, we measured 4 thoracic dimensions (transverse, anterior-posterior, manubrium to left and right hand sides of the diaphragmatic dome) for 2 control days, 3 days of amniotic and allantoic fluid drainage (oligohydramnios), and 2 days after the return of drained fluids. The effect of oligohydramnios, which began at 121-2 days of gestation (term being c.145 days), on each dimension was quantified daily as the difference between the measured value and the value predicted from the growth of that dimension over the study period. Oligohydramnios led, within 48 hours, to significant reductions in the transverse dimension (5.9-6.1%) and in the distance between the manubrium and the dome of the diaphragm (1.7-2.2%). There was no change in the anterior-posterior dimension. We conclude that oligohydramnios causes alterations, within 48 hours, in the dimensions of the fetal thorax which can be reversed, at least partially, by re-expansion of the fluid sacs. These changes, which are expected to produce reductions in thoracic volume, may, if prolonged, lead to lung hypoplasia.  相似文献   

10.
Prenatal tracheal occlusion (TO) consistently accelerates lung growth in the sheep model of congenital diaphragmatic hernia (CDH). However, significant variability in lung growth has been observed in early clinical trials of TO. We hypothesized that lung hypoplasia created at relatively late stages of lung development may not be equivalent to human CDH-induced lung hypoplasia, which begins early in gestation. To test this hypothesis, we performed TO in the rat model of nitrofen-induced CDH. Left-sided CDH was induced by administering 100 mg of nitrofen to timed pregnant rats on day 9 of gestation. On day 19 of gestation, four to five fetuses per dam underwent surgical ligation of the trachea. At death (day 21.5), lungs from non-CDH (non-CDH group), left-CDH (CDH group), and trachea-occluded left-CDH fetuses (CDH-TO group) were harvested and compared by weight, DNA and protein content, and stereological morphometry. Wet and dry lung weight-to-body weight ratio, total lung DNA and protein contents, the volume of lung parenchyma, and the total saccular surface area of the CDH-TO group were significantly increased relative to the CDH group and were either greater than or comparable to the non-CDH controls. We conclude that TO accelerates lung growth and increases lung parenchyma in an early-onset model of CDH-induced lung hypoplasia.  相似文献   

11.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Overexpression of peroxiredoxin 6 (Prdx6) has been shown to protect lungs of mice against hyperoxia-mediated injury. In this study, we evaluated whether genetic inactivation of Prdx6 in mice increases sensitivity to oxygen toxicity. We evaluated mouse survival, lung histopathology, total protein and nucleated cells in bronchoalveolar lavage fluid (BALF), and oxidation of lung protein and lipids by measurement of protein carbonyls and thiobarbituric reactive substances (TBARS), respectively. The duration of survival for Prdx6 -/- mice was significantly shorter than that observed in wild-type mice on exposure to 85 or 100% O(2); survival of Prdx6 +/- mice was intermediate. After 72-h exposure to 100% O(2), lungs of Prdx6-/- mice showed more severe injury than wild-type with increased wet/dry weight, epithelial cell necrosis and alveolar edema on microscopic examination, increased protein and nucleated cells in BALF, and higher content of TBARS and protein carbonyls in lung homogenate. These findings show that Prdx6 -/- mice have increased sensitivity to hyperoxia and provide in vivo evidence that Prdx6 is an important lung antioxidant enzyme.  相似文献   

13.
The pulmonary lymphatic vasculature plays a vital role in maintaining fluid homeostasis required for efficient gas exchange at capillary alveolar barriers and contributes to lung fluid clearance at birth. To further understanding of pulmonary lymphatic function at birth, lineage-tracing analysis of mouse lung was used. Lineage analysis confirmed that lymphatic endothelial cells (LEC) bud from extrapulmonary lymphatics and demonstrated that LEC migrate into developing lung along precise pathways. LEC cluster first in the primary bronchovascular region then along the secondary broncho-arterial regions and along veins. Small lymphatic vessels in distal lung develop from LEC that have migrated into lung mesenchyme from the extrapulmonary lymphatics. Finally, proximal and distal lymphatics remodel to form vessels with lumens in stereotypical locations. Loss of function analysis with lung-specific expression of a secreted form of the extracellular domain of vascular endothelial growth factor receptor-3 (dnR3) caused significant embryonic pulmonary lymphatic hypoplasia with fourfold reduction in distal LEC. Lung-specific expression of dnR3 did not affect blood vascular development, overall lung organogenesis or lymphatic development in other organs. Neonatal mice with pulmonary lymphatic hypoplasia developed respiratory distress with significantly increased mortality. During the transition to air breathing, lymphatic hypoplasia adversely affected fetal lung fluid clearance as determined by wet/dry weight analysis and morphometric analysis of bronchovascular cuffing and mesenchymal thickening. Surfactant synthesis was unaffected. Together, these data demonstrate that lung lymphatics develop autonomously and that pulmonary lymphatic hypoplasia is detrimental to survival of the neonate due to impaired lung fluid clearance.  相似文献   

14.
Suppressor of cytokine signaling-1 (SOCS-1) is a member of the suppressor of cytokine signaling family of proteins and an inhibitor of interleukin-6 (IL-6) signaling. SOCS-1 has been shown to protect cells from cellular damage and apoptosis induced by tumor necrosis factor (TNF), lipopolysaccharide (LPS), and interferon gamma (IL-γ). However, it is not known whether increased SOCS-1 is protective during pulmonary oxidative stress. Therefore, we hypothesized that increased SOCS-1 in the lungs of mice would be protective in the setting of hyperoxic lung injury. We administered SOCS-1 adenovirus (Ad-SOCS-1) intratracheally into the lungs and exposed the mice to 100% O2. Mice infected with GFP adenovirus (Ad-GFP) were used as controls. Mice treated with Ad-SOCS-1 had enhanced survival in 100% oxygen compared to Ad-GFP-administered mice. After 3 days of hyperoxia, Ad-GFP mice were ill and tachypnic and died after 4 days. In contrast, all Ad-SOCS-1-treated mice survived for at least 6 days in hyperoxia and 80% survived beyond 7 days. Ad-SOCS-1 transfection protected mouse lungs from injury as indicated by lower lung wet/dry weight, alveolar–capillary protein leakage, reduced infiltration of inflammatory cells, and lower content of thiobarbituric acid-reactive substances in lung homogenate. Our results also indicated that Ad-SOCS-1 significantly inhibits hyperoxia-induced ASK-1 (apoptosis signal-regulating kinase 1) expression. Taken together, these findings show that increased expression of adenovirus-mediated SOCS-1 in the lungs of mice significantly protects against hyperoxic lung injury.  相似文献   

15.
1-Cys peroxiredoxin (1-cysPrx) is a novel antioxidant enzyme that has been shown to reduce a broad spectrum of peroxides including phospholipid hydroperoxides. We tested the hypothesis that adenovirus-mediated transfer of the 1-cysPrx gene can protect lungs of mice from oxidant injury. Mice infected with AdLacZ/AdNull were used as a control (AdCon). X-galactosidase staining revealed widespread expression of the LacZ gene in airways and lung alveoli. Compared with AdCon, 1-cysPrx expression was increased about twofold at 3 days after adenovirus infection. Mice with increased Prx expression showed less loss of body weight and longer survival during exposure to 100% O(2) or to 85% O(2) for 4 days followed by 100% O(2). At 72 h of 100% O(2) exposure, AdPrx infection protected mouse lungs from injury as indicated by less pleural effusion, lower lung wet/dry weight, less protein and fewer nucleated cells in bronchoalveolar lavage fluid, and lower content of thiobarbituric acid-reactive substances and protein carbonyls in lung homogenate. These findings show that increased expression of 1-cysPrx through adenovirus-mediated gene transfer protects mouse lungs from hyperoxic injury and delays death.  相似文献   

16.
Most studies examining the cause of increased mortality in mice infected with a normally non-lethal dose of influenza A virus after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have focused on defects in the immune system. This study examined other possible consequences of TCDD exposure, which could alter pulmonary inflammation during infection. We measured bronchoalveolar lavage (BAL) fluid lactate dehydrogenase (LDH) and protein concentrations and lung wet to dry weight ratios to assess lung damage and edema formation. Immunohistochemistry for Cyp1A1 was used to evaluate the responsiveness of the lung to TCDD. Additionally, we characterized the effects of TCDD on Clara cell secretory protein (CCSP), which plays a regulatory role in pulmonary inflammation. There were no differences in BAL fluid LDH and protein levels, lung wet to dry weight ratios, or the amount of CCSP in the lungs from mice treated with TCDD or vehicle control. The amount of Cyp1A1 in endothelial cells, Clara cells, and Type II pneumocytes was greatly induced after TCDD exposure. Although lung tissue was clearly responsive to TCDD as shown by Cyp1A1 induction, the increased mortality in infected mice exposed to TCDD did not correlate with increased damage to the lung or decreased CCSP concentrations.  相似文献   

17.
Prolonged oligohydramnios, or a lack of amniotic fluid, is associated with pulmonary hypoplasia and subsequent perinatal morbidity, but it is unclear whether short-term or acute oligohydramnios has any effect on the fetal respiratory system. To investigate the acute effects of removal of amniotic fluid, we studied nine chronically catheterized fetal sheep at 122-127 days gestation. During a control period, we measured the volume of fluid in the fetal potential airways and air spaces (VL), production rate of that fluid, incidence and amplitude of fetal breathing movements, tracheal pressures, and fetal plasma concentrations of cortisol, epinephrine, and norepinephrine. We then drained the amniotic fluid for a short period of time [24-48 h, 30.0 +/- 4.0 (SE) h] and repeated the above measurements. The volume of fluid drained for the initial studies was 1,004 +/- 236 ml. Acute oligohydramnios decreased VL from 35.4 +/- 2.9 ml/kg during control to 22.0 +/- 1.6 after oligohydramnios (P less than 0.004). Acute oligohydramnios did not affect the fetal lung fluid production rate, fetal breathing movements, or any of the other measured variables. Seven repeat studies were performed in six of the fetuses after reaccumulation of the amniotic fluid at 130-138 days, and in four of these studies the lung volume also decreased, although the overall mean for the repeat studies was not significantly different (27.0 +/- 5.2 ml/kg for control vs. 25.5 +/- 5.5 ml/kg for oligohydramnios). Again, none of the other measured variables were altered by oligohydramnios in the repeat studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Pulmonary blood volume and edema in postpneumonectomy lung growth in rats   总被引:2,自引:0,他引:2  
After pneumonectomy in young animals, the contralateral lung undergoes compensatory growth and generally attains the same weight and air space volume as both lungs in age-matched controls. In this study, we determined the contribution of lung edema and increased blood volume to the weight gain in rats. Three weeks after pneumonectomy (n = 18) or sham pneumonectomy (n = 17), the pulmonary blood volume and the extravascular water and albumin were evaluated by use of 51Cr-labeled erythrocytes and 125I-labeled albumin. The air space volume, blood-free lung weights, and DNA and protein content were also compared. The data show that the total pulmonary blood volumes and the blood volume per gram of blood-free dry lung were similar in pneumonectomized and age-matched sham controls. The total extravascular albumin and the extravascular albumin per gram of blood-free dry lung were also similar as well as the extravascular lung water, wet-to-dry weight ratios, DNA and protein content, and air space volumes. These data indicate that the increased weight of the postpneumonectomy lung was due to cellular and stromal proliferation. The blood volume and interstitial fluid increased in proportion to the increase in lung parenchyma. Neither vascular congestion nor increased extravascular protein and water contributed to the observed weight gain.  相似文献   

19.
To test the hypothesis that a substance present in the amniotic fluid could serve as a regulator of amniotic fluid volume, we drained and discarded amniotic fluid while replacing it with lactated Ringer solution that was isotonic to amniotic fluid. Seven ewes with singleton fetuses at 119 +/- 1 days of gestation (mean +/- SE) were instrumented with multiple indwelling catheters in the pedal artery, pedal vein, and amniotic cavity. During the exchange periods, an average of 3,019 +/- 171 ml/day of lactated Ringer solution was infused into the amniotic cavity while an equal amount of amniotic fluid was pumped out and discarded. During the control period, amniotic fluid composition and volume were not altered. Exchange and control periods started with the same amniotic fluid volume, lasted 3 or 4 days, and were randomized with regard to order. Amniotic fluid volume measured by vacuum drainage was 556 +/- 98 ml at the end of the control period and 986 +/- 209 ml (P = 0.03) at the end of the exchange period. Fetal arterial blood gases, hemodynamic parameters and the osmolality gradient between fetal plasma and amniotic fluid were not altered by the exchange process. A linear relationship between the control amniotic fluid volume and the volume at the end of the exchange period (P = 0.003) suggests that the animals with larger control volumes responded to isovolumic dilution with a larger volume increase. We conclude that amniotic fluid may contain a substance that regulates amniotic volume.  相似文献   

20.
We investigated the effects of phrenic nerve section (PNS) on the respiratory system of fetal lambs. Seven ewes, three of which had twin fetuses, were given a general anesthetic. The thoracic phrenic nerves were cut in two singleton fetuses and in one fetus in each set of twins (116-121 days); two singleton fetuses and one fetus in each set of twins underwent the same procedure except for PNS. Fetal arterial blood pressure, heart rate, and arterial pH and blood gas tensions were the same in both groups. Phrenic nerve section eliminated fetal breathing movements and decreased airway fluid volume, lung weight, and total lung DNA (P less than 0.05). However, PNS did not affect production of tracheal fluid or percent dry weight of the lungs. Furthermore, PNS did not affect the concentration of saturated phosphatidylcholine in the lung or its flux in tracheal fluid. We conclude that PNS in fetal lambs retards lung growth but does not affect tracheal fluid production or formation and release of surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号