首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The promoter-like sequence P15 that was previously cloned from the chromosome of Lactobacillus acidophilus ATCC 4356 is active in Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus acidophilus, and Escherichia coli, but not in Lactococcus lactis. N-methyl-N-nitroso-N-guanidine (MNNG) mutagenesis of P15 was used to select for a promoter active in L. lactis MG1363. Molecular analysis of the mutated promoter (designated P16) revealed a 90 bp deletion and a T-->A transversion. This deletion, in combination with the addition to the transversion, created a promoter with putative -35 and -10 hexamers identical to the consensus promoter sequence found in E. coli and Bacillus subtilis vegetative promoters. The activity of P16 was measured by its ability to promote chloramphenicol resistance in different bacteria when inserted in the promoter-probe plasmid pBV5030 (designated pLA16). The MIC of chloramphenicol in L. lactis, L. reuteri, L. plantarum, E. coli, and L. acidophilus harbouring pLA16 were 30, 170, 180, > 500, and 3 micrograms/mL, respectively. This represents an increase in promoter activity compared to P15 in L. reuteri of 3-fold, in L. plantarum of 9-fold, and in E. coli of at least 2.5-fold, but a decrease in L. acidophilus of 7-fold.  相似文献   

2.
The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of beta-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known beta-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The beta-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain.  相似文献   

3.
Lactobacillus reuteri is a commensal-derived anaerobic probiotic that resides in the human gastrointestinal tract. L. reuteri converts glycerol into a potent broad-spectrum antimicrobial compound, reuterin, which inhibits the growth of gram-positive and gram-negative bacteria. In this study, we compared four human-derived L. reuteri isolates (ATCC 55730, ATCC PTA 6475, ATCC PTA 4659 and ATCC PTA 5289) in their ability to produce reuterin and to inhibit the growth of different enteric pathogens in vitro. Reuterin was produced by each of the four L. reuteri strains and assessed for biological activity. The minimum inhibitory concentration (MIC) of reuterin derived from each strain was determined for the following enteric pathogens: enterohemorrhagic Escherichia coli, enterotoxigenic E. coli, Salmonella enterica, Shigella sonnei and Vibrio cholerae. We also analyzed the relative abilities of L. reuteri to inhibit enteric pathogens in a pathogen overlay assay. The magnitude of reuterin production did not directly correlate with the relative ability of L. reuteri to suppress the proliferation of enteric pathogens. Additional antimicrobial factors may be produced by L. reuteri, and multiple factors may act synergistically with reuterin to inhibit enteric pathogens.  相似文献   

4.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

5.
6.
Aims:  To search for nondigestible but fermentable (NDF) carbohydrates and prebiotics with a potency to promote the growth of selected bacteria in vitro .
Methods and Results:  The growth of three reference bacteria strains Bacillus subtilis LMG 7135T, Carnobacterium piscicola LMG 9839, Lactobacillus plantarum LMG 9211 and one candidate probiotic bacteria Lactobacillus delbrueckii subsp. lactis was investigated over a minimum period of 48 h in the presence of β -glucan, xylo-oligosaccharide, arabinoxylo-oligosaccharide, inulin, oligofructose and glucose. Besides the capability to grow on inulin and oligofructose containing media, a distinct high growth in β -glucan based substrates and a low growth in (arabino)xylooligosaccharide containing media were evident for most bacteria tested. With the exception of B. subtilis and L. plantarum , other bacteria grew equally well or even better on different substrates than on glucose. The fermentation of studied carbohydrates by these micro-organisms was dominated by the production of acetic acid as the main short chain fatty acid.
Conclusions:  Selected bacteria are able to ferment and grow on NDF and prebiotic carbohydrates but in a substrate dependent manner.
Significance and Impact of the Study:  This study delivers a first screening of which NDF or prebiotic carbohydrates are the most promising for aquaculture feed supplementations.  相似文献   

7.
Aims:  The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions.
Methods and Results:  A tet (W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm (B) and one strain each was positive for erm (C) and erm (T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet (M) gene. The majority of the tet (W)-positive Lact. reuteri strains and all erm -positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study.
Conclusions:  Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated.
Significance and Impact of the Study:  These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.  相似文献   

8.
Culture supernatants of Lactobacillus reuteri ATCC 55730 repressed ler expression in Escherichia coli O157:H7 cells, but neither the strain's isogenic luxS mutant nor the L. reuteri 100-23C wild-type strain and its luxS mutant elicited a comparable effect. Furthermore, the epinephrine-mediated induction of ler expression was repressed by secreted substance(s) of L. reuteri ATCC 55730.  相似文献   

9.
Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results. In this work, Streptococcus pneumoniae PsaA antigen was expressed in different species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus helveticus. After nasal inoculation of C57Bl/6 mice, their ability to induce both systemic (IgG in serum) and mucosal (IgA in saliva, nasal and bronchial washes) anti-PsaA antibodies was determined. Immunization with L. lactis MG1363 induced very low levels of IgA and IgG, possibly by the low amount of PsaA expressed in this strain and its short persistence in the nasal mucosa. All three lactobacilli persisted in the nasal mucosa for 3 days and produced a similar amount of PsaA protein (150-250 ng per 10(9) CFU). However, L. plantarum NCDO1193 and L. helveticus ATCC15009 elicited the highest antibody response (IgA and IgG). Vaccination with recombinant lactobacilli but not with recombinant L. lactis led to a decrease in S. pneumoniae recovery from nasal mucosa upon a colonization challenge. Our results confirm that certain Lactobacillus strains have intrinsic properties that make them suitable candidates for mucosal vaccination experiments.  相似文献   

10.
Recent studies have suggested that the topical application of probiotic bacteria can improve skin health or combat disease. We have utilized a primary human keratinocyte culture model to investigate whether probiotic bacteria can inhibit Staphylococcus aureus infection. Evaluation of the candidate probiotics Lactobacillus reuteri ATCC 55730, Lactobacillus rhamnosus AC413, and Lactobacillus salivarius UCC118 demonstrated that both L. reuteri and L. rhamnosus, but not L. salivarius, reduced S. aureus-induced keratinocyte cell death in both undifferentiated and differentiated keratinocytes. Keratinocyte survival was significantly higher if the probiotic was applied prior to (P < 0.01) or simultaneously with (P < 0.01) infection with S. aureus but not when added after infection had commenced (P > 0.05). The protective effect of L. reuteri was not dependent on the elaboration of inhibitory substances such as lactic acid. L. reuteri inhibited adherence of S. aureus to keratinocytes by competitive exclusion (P = 0.026). L. salivarius UCC118, however, did not inhibit S. aureus from adhering to keratinocytes (P > 0.05) and did not protect keratinocyte viability. S. aureus utilizes the α5β1 integrin to adhere to keratinocytes, and blocking of this integrin resulted in a protective effect similar to that observed with probiotics (P = 0.03). This suggests that the protective mechanism for L. reuteri-mediated protection of keratinocytes was by competitive exclusion of the pathogen from its binding sites on the cells. Our results suggest that use of a topical probiotic prophylactically could inhibit the colonization of skin by S. aureus and thus aid in the prevention of infection.  相似文献   

11.
12.
Wang CY  Lin PR  Ng CC  Shyu YT 《Anaerobe》2010,16(6):578-585
This study assessed potential probiotic Lactobacillus strains isolated from the feces of breast-fed infants and from Taiwanese pickled cabbage for their possible use in probiotic fermented foods by evaluating their (i) in vitro adhesive ability, resistance to biotic stress, resistance to pathogenic bacteria, and production of β-galactosidase; (ii) milk technological properties; and (iii) in vivo adhesive ability, intestinal survival and microbial changes during and after treatment. Five Lactobacillus isolates identified as Lactobacillus reuteri F03, Lactobacillus paracasei F08, Lactobacillus rhamnosus F14, Lactobacillus plantarum C06, and Lactobacillus acidophilus C11 that showed resistance to gastric juice and bile salts were selected for further evaluation of their probiotic properties. All the strains demonstrated the ability to adhere to Caco-2 cells, particularly, strain L. plantarum C06 and L. reuteri F03 showed satisfactory abilities, which were similar to that of the reference strain L. rhamnosus GG. The strains L. paracasei F08 and L. acidophilus C11 had the highest β-galactosidase activity. Most of the strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin, erythromycin, and penicillin. All the 5 strains elicited antibacterial activity against both Gram-positive (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) and -negative (Escherichia coli and Salmonella enterica) pathogens. Moreover, the strains L. reuteri F03, L. paracasei F08, and L. plantarum C06 could grow rapidly in milk without nutrient supplementation and reached 10? cfu/mL after 24 h of fermentation at 37 °C. The viable cell counts of the 3 strains remained above 10? cfu/mL after 21 d of storage at 4 °C. In the animal feeding trial, the number of intestinal lactobacilli increased significantly after administration of milk fermented with the 3 strains, and the counts of fecal coliforms and Clostridium perfringens were markedly reduced. Lactobacillus strains could also survive in the ileal intestinal tissue of the treated rats. Technologically interesting Lactobacillus isolates may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

13.
AIMS: To screen the cystathionine lyase and L-methionine aminotransferase activities of cheese-related bacteria (lactococci, non-starter lactobacilli and smear bacteria) and to determine the individual and interactive effects of temperature, pH and NaCl concentration on selected enzyme activities. METHODS AND RESULTS: A subcellular fractionation protocol and specific enzyme assays were used, and a quadratic response surface methodology was applied. The majority of the strains, 21 of 33, had detectable cystathionine lyase activity which differed in the specificity. Aminotransferase activity on L-methionine was observed in only three strains. The cystathionine lyase activities of Lactobacillus reuteri DSM20016, Lactococcus lactis subsp. cremoris MG1363, Brevibacterium linens 10 and Corynebacterium ammoniagenes 8 and the L-methionine aminotransferase activity of Lact. reuteri DSM20016 had temperature and pH optima of 30-45 degrees C, and 7.5-8.0, respectively. As shown by the quadratic response surface methodology these enzymes retained activities in the range of temperature, pH and NaCl concentration which characterized the cheeses from which the bacteria originated. CONCLUSION: The enzyme activities may have a role in flavour development during cheese ripening. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge about the amino acid catabolic enzymes in order to improve cheese ripening.  相似文献   

14.
作为宿主系统的几株乳酸菌的表型特征   总被引:4,自引:0,他引:4  
目的:研究乳酸菌载体-宿主系统。方法:采用涂片染色和形态特征观察,用鉴别生化实验如过氧化氢酶实验,碳水化合物发酵产酸实验,精氨酸水解实验及抗生素抗性实验等对含有pMG36e质粒的乳酸菌MG1363,乳球菌IL1403和乳杆菌ATCC4356进行研究鉴定。结果:乳酸乳球菌乳脂亚种MG1363,乳酸乳球菌乳酸亚种IL1403含有质粒pMG36e的MG1363致及嗜酸乳杆菌ATCC4356其表型特征分别与伯杰氏手册中相应细菌特征一致,质粒pMG36e含有红霉素抗性基因,结论:此乳酸菌宿主一载体系统可用载体来源的红霉素抗性进行筛选,用于外源基因在乳酸菌中克隆和表达的研究。  相似文献   

15.
Lactobacillus reuteri ATCC 55730 is a probiotic strain that produces, in the presence of glycerol, reuterin, a broad-spectrum antimicrobial substance. This strain has been shown to prevent intestinal infections in vivo; however, its mechanisms of action, and more specifically whether reuterin production occurs within the intestinal tract, are not known. In this study, the effects of L. reuteri ATCC 55730 on intestinal microbiota and its capacity to secrete reuterin from glycerol in a novel in vitro colonic fermentation model were tested. Two reactors were inoculated with adult immobilized fecal microbiota and the effects of daily addition of L. reuteri into one of the reactors (c.10(8) CFU mL(-1)) without or with glycerol were tested on major bacterial populations and compared with addition of glycerol or reuterin alone. The addition of glycerol alone or with L. reuteri increased numbers of the Lactobacillus-Enterococcus group and decreased Escherichia coli. The addition of reuterin significantly and selectively decreased E. coli without affecting other bacterial populations. The observed decrease in E. coli concentration during the addition of glycerol (in presence or absence of L. reuteri) could be due to in situ reuterin production because 1,3-propanediol, a typical product of glycerol fermentation, was detected during the addition of glycerol.  相似文献   

16.
AIMS: To clone and analyse seven putative promoter fragments (pepC, pepN, pepX, pepO, pepE, pepO2, hsp17) from Lactobacillus helveticus CNRZ32 for their expression in Lact. helveticus CNRZ32, Lact. casei ATCC334 and Lactococcus lactis MG1363. METHODS AND RESULTS: Promoter fragments were fused to the promoter-less beta-glucuronidase (gusA) gene on pNZ272(RBS-) (ATG-). The resulting constructs were evaluated for their ability to drive the expression of active GusA with 0.5 mmol l(-1) 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide. All promoters except P(pepN)::gusA were active in the examined strains. Northern hybridization was performed to examine the promoter strength. Sequence analysis of these promoters identified well conserved putative ribosomal binding and putative -10 hexamers sites. CONCLUSIONS: Seven promoter fragments from Lact. helveticus CNRZ32 were recognized in the lactic acid bacteria, Lact. casei ATCC334 and L. lactis MG1363, as well as in Escherichia coli. P(pepN)::gusA could not be maintained in the strains examined because of toxicity associated with heterologous protein over-expression driven by P(pepN). SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed that desirable levels of heterologous food-grade protein production in GRAS organisms can be obtained with the application of natural promoter fragments from closely related organisms.  相似文献   

17.
Aims:  This study was carried out to explore the ability of wild and industrial strains of Lactococcus lactis to produce α-ketoglutarate (α-KG), which is essential during the conversion of amino acids to flavour compounds.
Methods and Results:  Two pathways in α-KG biosynthesis were explored in strains of L. lactis isolated from dairy products, vegetables and commercial dairy starter cultures. Half of the strains efficiently converted glutamine to glutamate (Glu) and grew in Glu-free medium. Strains did not present isocitrate dehydrogenase and aconitase activities. However, half of the strains presented glutamate dehydrogenase (GDH) activity.
Conclusions:  The ability of L. lactis to synthesize either α-KG or Glu via GDH was confirmed. However, L. lactis strains were not able to biosynthesize α-KG by the citrate–isocitrate pathway. NADP-GDH activity was mainly found in strains isolated from vegetables, whereas NAD-GDH activity was mainly found in strains isolated from dairy products.
Significance and Importance of the Study:  The origin of isolation highly influenced NAD or NADP-GDH activities. These enzymatic activities may be correlated to the flavour production capacity of the different strains.  相似文献   

18.
Aims:  To assess the ability of five probiotic bacteria to bind aflatoxin B1 and to determine the key role of teichoic acids in the binding mechanism.
Methods and Results:  The strains were incubated in aqueous solutions containing aflatoxin B1 (AFB1). The amount of free toxin was quantified by HPLC. Stability of the bacteria–aflatoxin complex was evaluated by repeated washes with buffer. In order to understand the binding process, protoplasts, spheroplasts and cell wall components of two strains were analysed to assess their capacity to bind AFB1. Additionally, the role of teichoic acids in the AFB1 binding process was assessed. Lactobacillus reuteri strain NRRL14171 and Lactobacillus casei strain Shirota were the most efficient strains for binding AFB1. The stability of the AFB1–bacteria complex appears to be related to the binding ability of a particular strain; AFB1 binding was also pH-dependent. Our results suggest that teichoic acids could be responsible for this ability.
Conclusions:  Our results provide information concerning AFB1 binding by previously untested strains, leading to enhanced understanding of the mechanism by which probiotic bacteria bind AFB1.
Significance and Impact of the Study:  Our results support the suggestion that some probiotic bacteria could prevent absorption of aflatoxin from the gastrointestinal tract.  相似文献   

19.
Conjugative transfer of the transposon Tn919 to lactic acid bacteria   总被引:1,自引:0,他引:1  
Abstract The streptococcal transposon Tn 919 was transferred from Streptococcus faecalis GF590 to selected Group N Streptococcus strains and to one strain each of Lactobacillus plantarum and Leuconostoc cremoris , using the filter mating method. An S. lactis MG1363 Rifr Tcr transconjugant also acted as a donor, but was less efficient than GF590. Frequencies of transfer varied between 4.0 × 10−8 and 5.29 × 10−5 per recipient. Further analysis of S. lactis MG1363 Smr Tcr transconjugants showed that insertion of Tn 919 into the chromosome was site-specific.  相似文献   

20.
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号