首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Verticillium wilt of potato is caused by the fungus pathogen Verticillium dahliae. Present sRNA sequencing data revealed that miR482 was in response to V. dahliae infection, but the function in potato is elusive. Here, we characterized potato miR482 family and its putative role resistance to Verticillium wilt. Members of the potato miR482 superfamily are variable in sequence, but all variants target a class of disease‐resistance proteins with nucleotide binding site (NBS) and leucine‐rich repeat (LRR) motifs. When potato plantlets were infected with V. dahliae, the expression level of miR482e was downregulated, and that of several NBS‐LRR targets of miR482e were upregulated. Transgenic potato plantlets overexpressing miR482e showed hypersensitivity to V. dahliae infection. Using sRNA and degradome datasets, we validated that miR482e targets mRNAs of NBS‐LRR disease‐resistance proteins and triggers the production of trans‐acting (ta)‐siRNAs, most of which target mRNAs of defense‐related proteins. Thus, the hypersensitivity of transgenic potato could be explained by enhanced miR482e and miR482e‐derived ta‐siRNA‐mediated silencing on NBS‐LRR‐disease‐resistance proteins. It is speculated that a miR482‐mediated silencing cascade mechanism is involved in regulating potato resistance against V. dahliae infection and could be a counter defense action of plant in response to pathogen infection.  相似文献   

4.
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae–plant interaction research.  相似文献   

5.
6.
The expression patterns of plant defense genes encoding osmotin and osmotin-like proteins imply a dual function in osmotic stress and plant pathogen defense. We have produced transgenic potato (Solanum commersonii Dun.) plants constitutively expressing sense or antisense RNAs from chimeric gene constructs consisting of the cauliflower mosaic virus 35S promoter and a cDNA (pA13) for an osmotin-like protein. Transgenic potato plants expressing high levels of the pA13 osmotin-like protein showed an increased tolerance to the late-blight fungus Phytophthora infestans at various phases of infection, with a greater resistance at an early phase of fungal infection. There was a decrease in the accumulation of osmotin-like mRNAs and proteins when antisense transformants were challenged by fungal infection, although the antisense transformants did not exhibit any alterations in disease susceptibility. Expression of pA13 sense and antisense RNAs had no effect on the development of freezing tolerance in transgenic plants when assayed under a variety of conditions including treatments with abscisic acid or low temperature. These results provide evidence of antifungal activity for a potato osmotin-like protein against the fungus P. infestans, but do not indicate that pA13 osmotin-like protein is a major determinant of freezing tolerance.  相似文献   

7.
8.
9.
The environmental release of genetically engineered (transgenic) plants may be accompanied by ecological effects including changes in the plant-associated microflora. A field release of transgnic potato plants that produce the insecticidal endotoxin ofBacillus thuringiensis var.tenebrionis (Btt) was monitored for changes in total bacterial and fungal populations, fungal species diversity and abundance, and plant pathogen levels. The microflora on three phenological stages of leaves (green, yellow and brown) were compared over the growing season (sample days 0, 21, 42, 63 and 98) for transgenic potato plants, commercial Russet Burbank potato plants treated with systemic insecticide (Di-Syston) and commercial Russet Burbank potato plants treated with microbialBtt (M-Trak). In addition, plant and soil assays were performed to assess disease incidence ofFusarium spp.,Pythium spp.,Verticillium dahliae, potato leaf roll virus (PLRV) and potato virus Y (PVY). Few significant differences in phylloplane microflora among the plant types were observed and none of the differences were persisent. Total bacterial populations on brown leaves on sample day 21 and on green leaves on sample day 42 were significantly higher on the transgenic potato plants. Total fungal populations on gree leaves on sample day 63 were significantly different among the three plant types; lowest levels were on the commerical potato plants treated with systemic insecticide and highest levels were on the commercial potato plants treated with microbialBtt. Differences in fungal species assemblages and diversity were correlated with sampling dates, but relatively consistent among treatments.Alternaria alternata, a common saprophyte on leaves and in soil and leaf litter, was the most commonly isolated fungus species for all the plant treatments. Rhizosphere populations of the soilborne pathogensPythium spp.,Fusarium spp. andV. dahliae did not differ between the transgenic potato plants and the commercial potato plants treated with systemic insecticide. The incidence of tuber infection at the end of the growing season by the plant pathogenV. dahliae was highest for the transgenic potato plants but this difference was related to longer viability of the transgenic potato plants. This difference in longevity between the transgenic potato plants and the commercial + systemic insecticide potato plants also made comparison of the incidence of PVY and PLRV problematic. Our results indicate that under field conditions the microflora of transgenicBtt-producing potato plants differed minimally from that of chemically and microbially treated commerical potato plants.  相似文献   

10.
11.
Verticillium wilt is a disastrous vascular disease in plants caused by Verticillium dahliae. Verticillium pathogens secrete various disease-causing effectors in cotton. This study identified a subtilase gene GbSBT1 from Gossypium babardense and investigated the roles against V. dahliae infection. GbSBT1 gene expression is responsive to V. dahliae defense signals, jasmonic acid, and ethylene treatments. Moreover, the GbSBT1 protein is mainly localized in the cell membrane and moves into the cytoplasm following jasmonic acid and ethylene treatments. Silencing GbSBT1 gene expression through virus-induced GbSBT1 gene silencing reduced the tolerance of Pima-90 (resistant genotype), but not facilitated the infection process of V. dahliae in Coker-312 (sensitive genotype). Moreover, the ectopically expressed GbSBT1 gene enhanced the resistance of Arabidopsis to Fusarium oxysporum and V. dahliae infection and activated the expression levels of defense-related genes. Furthermore, pull-down, yeast two-hybrid assay, and BiFC analysis revealed that GbSBT1 interacts with a prohibitin (PHB)-like protein expressed in V. dahliae pathogens during infection. In summary, GbSBT1 recognizes the effector PHB protein secreted from V. dahliae and is involved in Verticillium-induced resistance in cotton.  相似文献   

12.
Verticillium wilt (V. wilt), a notorious wilt disease caused by Verticillium dahliae, often leads to the reduction of eggplant (Solanum melongena L.) production. MiRNAs, as a class of small RNAs, can regulate gene expression and then affect growth and development in plants. MiR395 has been proven to respond to sulfate-deficient stress in Arabidopsis thaliana and sulfate is well known to have a close relationship with plant disease resistance. To explore the function of eggplant miR395, we examined its expression in V. dahliae-infected eggplant by qRT-PCR and found miR395 exhibited a gradual reduction trend with time after infection. We then expressed pre-miR395 from Arabidopsis thaliana in Suqi eggplant and resistance analysis showed that miR395 overexpressed plants were hypersensitive to V. dahliae infection. We further measured the content of GSH and activities of POD and SOD and the results indicated that the index of GSH/POD/SOD in the overexpressed plants was lower than that of the wild-type control under V. dahliae infection. These results suggest that miR395 plays a negative role in eggplant response to V. dahliae infection.  相似文献   

13.
14.
15.
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt diseases in hundreds of dicotyledonous plant species. Previous research has demonstrated that the secretome plays an important role in the pathogenicity of V. dahliae. In this study, the specific secreted protein gene (VdSSP1) in highly virulent defoliating V. dahliae strain VDG1 was cloned, and considered to be a secreted protein by signal peptide activity assay. VdSSP1 deletion mutants in VDG1 significantly compromised virulence, and the fungal growth decreased in media with pectin and starch as carbon sources. Pathogenicity and carbon utilization were restored upon complementation of the VdSSP1 deletion strains or low virulence non-defoliating strain VDG2, which lacks VdSSP1. It is indicated that the virulence role of VdSSP1 is associated with plant cell wall degradation. In conclusion, our data suggested that VdSSP1 is a secreted protein that is engaged in the pathogenicity of the highly virulent defoliating V. dahliae.  相似文献   

16.
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.  相似文献   

17.
Verticillium wilt of potato is a persistent problem in the USA and worldwide. The disease, which is caused primarily by the fungus Verticillium dahliae, is difficult to manage, causes yield losses, and contaminates soil for subsequent plantings. Control strategies based on host resistance are seen as long-term, stable solutions, but difficult to achieve given the genetic nature of the host and the challenges associated with resistance evaluations. To provide breeders with marker-assisted selection opportunities, we generated a pair of cleaved amplified polymorphic sequence molecular markers within the coding region of Ve2, a potato gene with homology to the tomato Ve1 gene that confers resistance to V. dahliae. The position of the marker was determined according to the consensus sequences of Ve2 homologs of wild Solanum species with resistance to V. dahliae. Marker testing indicated their broad applicability, being able to track the resistance to V. dahliae in progeny containing genetic information derived from species S. chacoense, S. brevicaule, S. berthaultii, S. tarijense, and S. tuberosum. Furthermore, the two isolates of V. dahliae used in our inoculation experiments differed in virulence and demonstrated specificity for some wild potato species. Experimentation leading to the development of the markers and tests of their usefulness against a wide range of diploid potato germplasm is presented.  相似文献   

18.
Although the isolation of Verticillium albo-atrum and V. dahliae from soil and dried moribund stems following infection of a potato crop proved extremely difficult, both fungi were equally capable of overwintering in these substrates and of inducing disease in a subsequently planted susceptible crop. In the absence of a susceptible crop some weed species became colonized. The two species, however, appeared to differ in their capacity for survival both beneath a monocotyledonous crop and within the potato tubers. Colonization of the roots of wheat, barley, oats, rye and maize was observed with V. dahliae but not with V. albo-atrum. The latter appeared to be capable of prolonged survival in the tubers, whereas V. dahliae did not remain viable in storage over winter. Consequently only tubers infected with V. albo-atrum produced infected plants. The presence of the fungi within the tubers affected neither dormancy nor the initial development of the sprouts. Some correlation was noted between tuber size, the percentage of tubers infected, the distribution of V. albo-atrum within the tubers and the development of disease in plants subsequently grown from these tubers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号