首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Hairy root lines were induced from leaf explants of Rauwolfia serpentina known to contain high levels of reserpine (0.0882 % DW) content. Out of five high yielding hairy root lines, three (R1, R14 and R15) exhibited spontaneous regeneration of shoots after 6–8 weeks in liquid B5 medium. Excised regenerated shoots underwent robust shoot proliferation when cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg/l naphthanleneacetic acid (NAA) and 1.0 mg/l 6-benzyladenine. When shoots were transferred to a root induction medium, consisting of MS basal medium and 1.0 mg/l NAA, all rooted within 2–3 weeks. Of a total of 45 plants developed from three different hairy root lines, 30 were successfully acclimatized and transferred to the green house. Almost 90 % of these plants grown in the green house showed no observed phenotypic differences, while 10 % were stunted and grew poorly, in comparison to non-transformed plants. Phenotypic assessment of regenerated plants for plant length, number of nodes and intermodal lengths, number of leaves per node, leaf color, leaf size, number of flowering shoots, flower size, fruit size, lateral root branching and root biomass was conducted. Polymerase chain reaction and Southern blot hybridization revealed that all plants derived from hairy roots carried the Ri TL-DNA fragment. Moreover for plants derived from transgenic hairy root line R14, presence of more than a single transgene copy number was observed, and this might have contributed to observed abnormal phenotypes. Analysis of reserpine content revealed that roots of regenerated plants had similar levels (0.0889 % DW) to those of their corresponding hairy roots.  相似文献   

4.
5.
The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.  相似文献   

6.
Using several explants of Pueraria candollei Grah. ex Benth. var. candollei and two strains of Agrobacterium rhizogenes (ATCC 15834 and 43057), hairy root cultures were established. Including 100???M acetosyringone in the culture medium enhanced frequency of hairy root induction by up to 58?%. Subsequently, effects of inoculum size (IS) and temperature on growth and production of isoflavonoids in hairy roots were determined. Conditions of 1?%?IS and 32?°C promoted the highest accumulation of total isoflavonoid content, up to 31.0?±?22.6?mg/g dry weight (DW), in hairy roots. Moreover, culture of hairy roots at 32?°C decreased browning of hairy roots. Furthermore, this temperature promoted accumulation of the secondary metabolite daidzein; whereas, hairy root cultures at the stationary phase accumulated higher amounts of the isoflavonoid puerarin rather than daidzein.  相似文献   

7.
Liu W  Chen R  Chen M  Zhang H  Peng M  Yang C  Ming X  Lan X  Liao Z 《Planta》2012,236(1):239-250
Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K m of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K m of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g?1 DW) than the EtOH control (0.183 mg g?1 DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g?1 DW) followed by in bark (0.161 mg g?1 DW) and young leaf (0.130 mg g?1 DW), and least in root (0.014 mg g?1 DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.  相似文献   

8.
9.
The biosynthetic potential for six lignans accumulation in two lines of Taxus x media hairy roots was investigated. The cultures of KT and ATMA hairy root lines were supplemented with precursors: coniferyl alcohol (CA 1, 10 or 100 µM) and/or l-phenylalanine (100 µM PHEN) and/or methyl jasmonate (100 µM MeJa). Moreover the two-phase in vitro cultures supported with perfluorodecalin (PFD) as a gas carrier and in situ extrahent were used. The hairy root lines differed in lignan production profiles. In the control untreated cultures KT roots did not accumulate secoisolariciresinol and lariciresinol while ATMA roots did not accumulate matairesinol. In ATMA roots the treatment with CA (1 or 10 µM) resulted in the production of lariciresinol and secoisolariciresinol whereas solely lariciresinol was present after 100 µM CA application. Elicitation with 1 µM CA and MeJa yielded with hydroxymatairesinol aglyca and lariciresinol glucosides with their highest content 37.88 and 3.19 µg/g DW, respectively. The stimulatory effect of simultaneous treatment with 1 µM CA, PHEN and MeJa on lignan production was observed when the cultures were supplemented with PFD-aerated or degassed. In ATMA root cultures these applied conditions were the most favourable for matairesinol content which amounted to 199.86 and 160.25 µg/g DW in PFD-aerated and PFD-degassed supported cultures, respectively. In KT root cultures solely, hydroxymatairesinol and coniferin/CA content was enhanced with their highest yield 59.29 and 134.60 µg/g DW in PFD-aerated and PFD-degassed cultures, respectively.  相似文献   

10.
We investigated the effect of Agrobacterium rhizogenes-mediated transformation on antioxidant activity of Artemisia vulgaris “hairy” roots. It appeared that transformation may increase flavonoid content as well as DPPH-scavenging activity and ability to reduce Fe3+ as compared to the non-transformed plants. Some “hairy” roots accumulated flavonoids up to 73.1?±?10.6?mg RE/g DW (while the amount of flavonoids in the leaves of non-transformed plants was up to 49.4?±?5.0?mg RE/g DW). DPPH-scavenging activity of some “hairy” root lines was 3–3.8 times higher than such one of the roots of the control plants. The Fe3+-reducing power of most transgenic root extracts exceeded such power of the extracts of the roots of the control plants. The decrease in SOD activity was found in the most “hairy” root lines compared to the control roots. The increase of flavonoid content correlated with the increase of ability of extracts to scavenge DPPH*- radical and Fe3+ - reducing power. No correlation between SOD activity of extracts and concentration of flavonoids was found (p?≥?0.2).Thus, transformation has led to the alteration in flavonoid accumulation and antioxidant activity in A. vulgaris “hairy” roots. Transgenic roots with high-antioxidant properties can be selected after A. rhizogenes-mediated transformation.  相似文献   

11.
Stable lines of hairy roots were established from leaf explants of Bacopa monnieri using different strains (A4, R1000, SA79, MTCC 532 and MTCC 2364) of Agrobacterium rhizogenes. The efficiency of hairy roots induction of these strains varied significantly and the maximum transformation frequency (75 %) was observed in case of strain SA79 using leaf explants followed by internode (55 %) in the presence of acetosyringone. Different parameters such as cell density of Agrobacterium suspension, co-cultivation period and infection time influenced the root induction frequency. Maximum frequency of root induction was obtained with bacterial density of 0.6 OD600, 2 days of co-cultivation period and 10 min of infection time. Integration of T-DNA in the genome of hairy roots was confirmed by PCR amplification of rolB gene. Elimination of Agrobacterium from the established root cultures was ascertained by amplifying the DNA fragment specific to 16S rDNA and virD gene. All lines of hairy roots except strain A4 induced showed higher growth rate and accumulated higher levels of ‘bacoside A’ than the untransformed roots. Maximum biomass accumulation (6.8 g l?1) and ‘bacoside A’ content (10.02 mg g?1 DW) were recorded in case of the hairy root line induced by strain MTCC 2364.  相似文献   

12.
Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance tanshinone production. Over-expression of SmHMGR or SmDXR in hairy root lines can significantly enhance the yield of tanshinone. Transgenic hairy root lines co-expressing HMGR and DXR (HD lines) produced evidently higher levels of total tanshinone (TT) compared with the control and single gene transformed lines. The highest tanshinone production was observed in HD42 with the concentration of 3.25 mg g?1 DW. Furthermore, the transgenic hairy roots showed higher antioxidant activity than control. In addition, transgenic hairy root harboring HMGR and DXR (HD42) exhibited higher tanshinone content after elicitation by yeast extract and/or Ag+ than before. Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg g?1 DW by YE, Ag+, and YE-Ag+ treatment compared with non-induced HD42, respectively. The content of cryptotanshinone and dihydrotanshinone was effectively elevated upon elicitor treatments, whereas there was no obvious promotion effect for the other two compounds tanshinone I and tanshinone IIA. Our results provide a useful strategy to improve tanshinone content as well as other natural active products by combination of genetic engineering with elicitors.  相似文献   

13.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

14.
Expression systems based on plant cells, tissue, and organ cultures have been investigated as an alternative for production of human therapeutic proteins in bioreactors. In this work, hairy root cultures of Brassica oleracea var. italica (broccoli) were established in an airlift with mesh bioreactor to produce isoform 1 of the human growth hormone (hGH1) as a model therapeutic protein. The hGH1 cDNA was cloned into the pCAMBIA1105.1 binary vector to induce hairy roots in hypocotyls of broccoli plantlets via Agrobacterium rhizogenes. Most of the infected plantlets (90%) developed hairy roots when inoculated before the appearance of true leaves, and keeping the emerging roots attached to hypocotyl explants during transfer to solid Schenk and Hildebrandt medium. The incorporation of the cDNA into the hairy root genome was confirmed by PCR amplification from genomic DNA. The expression and structure of the transgenic hGH1 was assessed by ELISA, western blot, and MALDITOF‐MS analysis of the purified protein extracted from the biomass of hairy roots cultivated in bioreactor for 24 days. Production of hGH1 was 5.1 ± 0.42 µg/g dry weight (DW) for flask cultures, and 7.8 ± 0.3 µg/g DW for bioreactor, with productivity of 0.68 ± 0.05 and 1.5 ± 0.06 µg/g DW*days, respectively, indicating that the production of hGH1 was not affected by the growth rate, but might be affected by the culture system. These results demonstrate that hairy root cultures of broccoli have potential as an alternative expression system for production of hGH1, and might also be useful for production of other therapeutic proteins. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:161–171, 2014  相似文献   

15.
Anisodus luridus hairy root cultures were established to test biological effects of acetylsalicylic acid (ASA) and ultraviolet ray-B (UV-B) on gene expression, tropane alkaloid (TA) biosynthesis and efflux. The TAs-pathway gene expression was ASA dosage dependant. The expression of PMT, TRI and CYP80F1 showed no significant difference in hairy root cultures in treatment of 0.01 and 0.1 mM ASA, compared with those without ASA treatment; while 0.01 or 0.1 mM ASA slightly upregulated H6H expression. All the four genes including PMT, TRI, CYP80F1 and H6H had a dramatic increase in 1 mM ASA-treated hairy root cultures compared with control. The expressing levels of all the four genes were much significantly higher in 1 mM ASA-treated hairy root cultures than those in 0.01 and 0.1 mM ASA-treated ones. As expected, hairy root cultures treated with 1 mM ASA had the highest capacity of TAs biosynthesis, in which the content of scopolamine and hyoscyamine reached respectively 57.2 and 14.7 μg g?1 DW. Surprisingly, it was found that 1 mM ASA dramatically induced the efflux of scopolamine. In the liquid medium with 1 mM ASA, the content of scopolamine was 153.4 μg flask?1, about 6.2 folds compared with that of control. At the same time, hyoscyamine was detected at trace levels in liquid medium. In the UV-B stressed hairy root cultures, all the four genes had a very strong increase of gene expression that led to more accumulation of scopolamine and lower accumulation of hyoscyamine. Only trace amounts of hyoscyamine and scopolamine were detected in the liquid medium when hairy root cultures were stressed under UV-B, and this suggested that UV-B did not affect TAs efflux.  相似文献   

16.
Two strains of Agrobacterium rhizogenes (15834, LBA 9402) and one Agrobacterium tumefaciens strain [GV 3101 (PMP90RK, p35SGUS-2)] and four culture media were tested and compared for their ability to induce hairy root formation on wounded Papaver somniferum L. hypocotyls. Five weeks after the infection with A. rhizogenes LBA 9402, hairy roots appeared on 80% of the hypocotyls maintained in the hormone-free liquid medium. Six hairy-root cultures were established. Transformation was confirmed by polymerase chain reaction analysis. One clone was analysed for its alkaloid production. The total alkaloid content was higher in the transformed roots (0.46±0.06% DW) than in the untransformed roots (0.32±0.05% DW). The transformed roots accumulated three times more codeine (0.18±0.02% DW) than intact roots (0.05±0% DW). Moreover, morphine (0.255±0.03% DW) and sanguinarine (0.014±0% DW) were found in the liquid culture medium.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - LS Linsmaier and Skoog  相似文献   

17.
Agrobacterium rhizogenes mediated transformation of Decalepis arayalpathra, an ethnomedicinal plant, was achieved by infecting juvenile hypocotyl explants with different strains, including A4, MTCC 532, TR105 and LBA 5402. Hypocotyl explants induced hairy roots at a higher frequency (53.2 ± 0.3 %) than cotyledons (32.1 ± 0.2 %) when infected with the most virulent strain TR105. The explants co-cultivated 48 h in half-strength salts and vitamins of Murashige and Skoog basal medium (half-MSB) induced hairy roots either directly from the wounds or followed by the formation of gall like structures. Irrespective of the explants, the strain MTCC 532 induced callus alone. The root initials on the galls proliferated vigorously and elongated more rapidly when they were segmented and subcultured on half-MSB medium than the proliferation and elongation of directly emerged roots. The established hairy roots showed intermittent gall formation which was the active sites for hairy roots induction. The molecular evidence of rol A and rol C gene integration was confirmed by PCR amplification and southern blot hybridization. Growth of the hairy roots was undertaken by measuring root growth unit after culturing root tips in half-MSB solid medium and determined fresh weight/dry weight/conductivity during time-course study in shake flask cultures. The maximum biomass and accumulation of the root specific compound, 2-hydroxy-4-methoxy benzaldehyde (MBALD) (0.22 % dry weight), was recorded at the 6th week of growth, which was more than that observed in normal root cultures (0.16 % dry weight).  相似文献   

18.
This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.  相似文献   

19.
20.
Among five hairy root lines of Picrorhiza kurrooa that were established through Agrobacterium rhizogenes, one (H7) was selected for encapsulation due to high accumulation of picrotin and picrotoxinin (8.3 and 47.6 μg/g DW, respectively). Re-grown encapsulated roots induced adventitious shoots with 73 % frequency on MS medium supplemented with 0.1 μM 6-benzylaminopurine, following 6 months of storage at 25 °C. Regenerated plantlets had 85 % survival after 2 months. Regenerants were of similar morphotype having increased leaf number and branched root system as compared to non-transformed plants. The transformed nature of the plants was confirmed through PCR and Southern blot analysis. Genetic fidelity analysis of transformed plants using RAPD and ISSR showed 5.2 and 3.6 % polymorphism, respectively. Phytochemical analysis also showed that picrotin and picrotoxinin content were similar in hairy root line and its regenerants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号