首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The systemic and regional hemodynamics effects of ANG-(1-7) were examined in urethane-anesthetized rats. The blood flow distribution (kidneys, skin, mesentery, lungs, spleen, brain, muscle, and adrenals), cardiac output, and total peripheral resistance were investigated by using fluorescent microspheres. Blood pressure and heart rate were recorded from the brachial artery. ANG-(1-7) infusion (110 fmol x min(-1) x 10 min(-1) iv) significantly increased blood flow to the kidney (5.10 +/- 1.07 to 8.30 +/- 0.97 ml x min(-1) x g(-1)), mesentery (0.73 +/- 0.16 to 1.17 +/- 0.49 ml x min(-1) x g(-1)), brain (1.32 +/- 0.44 to 2.18 +/- 0.85 ml x min(-1) x g(-1)), and skin (0.07 +/- 0.02 to 0.18 +/- 0.07 ml x min(-1) x g(-1)) and the vascular conductance in these organs. ANG-(1-7) also produced a significant increase in cardiac index (30%) and a decrease in total peripheral resistance (2.90 +/- 0.55 to 2.15 +/- 0.28 mmHg x ml(-1) x min x 100 g). Blood flow to the spleen, muscle, lungs, and adrenals, as well as the blood pressure and heart rate, were not altered by the ANG-(1-7) infusion. The selective ANG-(1-7) antagonist A-779 reduced the blood flow in renal, cerebral, mesenteric, and cutaneous beds and blocked the ANG-(1-7)-induced vasodilatation in the kidney, mesentery, and skin, suggesting a significant role of endogenous ANG-(1-7) in these territories. The effects of ANG-(1-7) on the cerebral blood flow, cardiac index, systolic volume, and total peripheral resistance were partially attenuated by A-779. A high dose of ANG-(1-7) (11 pmol x min(-1) x 10 min(-1)) caused an opposite effect of that produced by the low dose. Our results show for the first time that ANG-(1-7) has a previously unsuspected potent effect in the blood flow distribution and systemic hemodynamics.  相似文献   

2.
Effects of pituitary adenylate cyclase-activating polypeptide (PACAP38) and PACAP27 on the cardiovascular and respiratory systems were examined and compared to those of vasoactive intestinal polypeptide (VIP) in anesthetized beagle dogs. Intravenous PACAP27 and PACAP38 produced a decrease in mean arterial blood pressure (MBP), and an increase in both femoral arterial blood flow (ABF) and in frequency of respiration (FR) with a dose-dependent relationship between 10 and 300 pmol/kg. PACAP27 produced a dose-dependent increase in heart rate (HR) between 10 and 300 pmol/kg while PACAP38 induced tachycardia which was not dose-dependent. Administration of 300 pmol/kg PACAP38 and PACAP27 produced extreme hypertension after transient hypotension. PACAP38 produced severe bradycardia after transient tachycardia. The cardiovascular actions of PACAP38 were persistent compared to those of PACAP27. Intravenous injection of 10-300 pmol/kg VIP brought about hypotension, tachycardia and an increase in ABF and FR with a dose-dependent relationship. VIP, at 2000 pmol/kg, did not produce the biphasic response obtained by a large dose of PACAP38. The present studies demonstrate that PACAP partially possesses VIP-like cardiovascular and respiratory actions and that the C-terminal 11 amino acid residues of PACAP38 are presumably responsible for a prolongation of its actions.  相似文献   

3.
The effect of increasing doses of PHM given subepithelially or intravenously on vaginal blood flow was studied. Vaginal blood flow was measured by a heated oxygen electrode, and the concentration of PHM in peripheral plasma was monitored radioimmunochemically. Injection of PHM induced a significant dose-dependent increase in vaginal blood flow. The flow values correlated with the plasma concentrations independent of the way of administration. The efficacy was the same as previously found for VIP but the potency of subepithelially injected PHM was found to be 10-fold lower than that of VIP. In conclusion, PHM and VIP seem to have similar vasodilatory effects upon vaginal blood flow.  相似文献   

4.
In order to clarify the importance of C-terminal phenylalanine in angiotensin II (ANG II) molecule, agonistic activities of a C-terminal substituted peptide, isoleucine8-angiotensin II (Ile8-ANG II), were studied in comparison with those of sarcosine1-, isoleucine8-angiotensin II (Sar1-, Ile8-ANG II) and isoleucine5-angiotensin II (Ile5-ANG II) in 5 normal men. When infused iv at a rate of 600 pmol/kg X min for 30 min, Ile8-ANG II and Sar1-, Ile8-ANG II raised the blood pressure to the same extent (15/15 mmHg on the average), while the average blood pressure increase was 21/21 mmHg after an iv infusion of Ile5-ANG II at a rate of 5 pmol/kg X min for 30 min. Duration of the pressor action after the cessation of each infusion was 50-90, 90-120 and 10-25 min, respectively. In each case plasma renin activity (PRA) decreased and plasma aldosterone (PA) increased. When infused iv at a rate of 10 pmol/kg X min (maximum non-pressor dose) for 120 min, both Ile8-ANG II and Sar1-, Ile8-ANG II lowered PRA and increased PA gradually, but 100 mg oral captopril given immediately before these infusions caused no significant increase in PRA or no significant decrease in PA but again a decrease in PRA and an increase in PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Complete obstruction of the maternal blood flow to fetal rats at 20 days of gestation for a period of 10 min causes a significant shift of approximately 22% in protein kinase C (PKC) activity from a cytosolic to a membrane-bound form in the fetal brain. This translocation can be entirely reversed without losses in activity by a single intraperitoneal injection into the gravid rat of either a mixture of disialo- and trisialoganglioside [polysialoganglioside (PSG)] or by GM1 (50 mg/kg of body weight) given 3 h before onset of the ischemic episode. Cessation of blood flow for 15 min followed by a reperfusion period of 24 h results in a 47% loss in total PKC activity. This down-regulation can be almost entirely prevented upon intraperitoneal administration of GM1 3 h before, but also during and even 90 min after the onset of ischemia. The PSG mixture is also effective, particularly when given 3 h before the insult. Down-regulation of PKC is accompanied by an increase in a Ca2(+)-phosphatidylserine-independent kinase [protein kinase M (PKM)] activity, which rises from 30 pmol/min/mg of protein in control animals to a maximal value of 83.1 pmol/min/mg of protein after 15 min of ischemia and 6 h of reperfusion. By 24 h, PKM activity is 46.8 pmol/min/mg of protein. Administration of GM1 blocks completely the appearance of PKM, a result suggesting that PKC down-regulation and PKM activity elevation are intimately associated events and that both are regulated by GM1 ganglioside.  相似文献   

6.
Endometrial blood flow was measured in seven goats twice before, once during, and twice after the close intra-arterial infusion of 300 pmol/min of vasoactive intestinal polypeptide (VIP). A saline solution of 85krypton was injected intra-arterially and local blood flow calculated from the disappearance rate of the isotope from tissue surrounding a miniature Geiger-Müller probe in the uterine lumen. Initial blood flows (median and range) in animals pretreated with oestradiol-17β (N = 4) or with a regimen of oestradiol-17β and progesterone (N = 3), respectively, were 0.21 (0.11–0.35) and 0.20 (0.06–0.27) ml min?1 g?1. No significant change in endometrial blood flow occurred during or after the infusion of VIP, although the dose was sufficient to increase heart rate from 2.14 ± 0.15 to 2.32 ± 0.16 Hz (P < 0.001). The results indicate that VIP, in a dose known to increase myometrial blood flow in goats, is unable to evoke vasodilatation in the endometrium of this species. Since there is a corresponding variation in the density of nerve fibers containing VIP, it is suggested that VIP may play a role in regulating the partition of uterine blood flow in goats.  相似文献   

7.
The occurrence, molecular characteristics and biological function of neuropeptide Y (NPY) has been studied in the female genital tract of non-pregnant rabbits. NPY immunoreactivity was demonstrated throughout the genital tract. Maximum concentrations were found in the salpinx (fallopian tube), 570 pmol/g (median) lower within the uterine body (1.5 pmol/g), cervix (2.8 pmol/g) and vagina (3.6 pmol/g). In vitro, NPY had a dose-dependent stimulatory effect on non-vascular smooth muscle (ED50 10(-9) mol/l) as studied by myometrial tension recordings. In vivo, NPY (50 pmol/min.kg) induced a dose-related, non-adrenergic and non-cholinergic decrease in myometrial blood flow. Small C-terminal (NPY31-36) or N-terminal (NPY1-16) fragments of NPY had no effect on myometrial blood flow. NPY was found to interact with the smooth muscle effect of VIP; the presence of VIP (10(-8) mol/l) counteracted the contraction elicited by NPY (10(-8) mol/l) returning the response to control value. VIP and NPY displayed a similar physiological antagonism on myometrial blood flow. There was a clear difference in the response to VIP and NPY as the effect of NPY on myometrial blood flow first appeared after a lag period of 2 minutes whereas the effect of VIP was almost instantaneous. It is concluded that NPY and VIP may interact in the local nervous control of genital functions.  相似文献   

8.
J Calam  R J Unwin  J Singh  S Dorudi  W S Peart 《Peptides》1984,5(2):441-443
VIP containing nerves are present in the kidney and plasma VIP levels are elevated in cardiac failure and severe liver disease. We studied the effects of intravenous VIP; 6 pmol kg-1 min-1 on 6 normal subjects and 3 patients with liver disease. In normal subjects VIP produced flushing and significant rises in heart rate and pulse pressure but the clearance rates of paraaminohippurate and creatinine did not change significantly. Urine flow fell to about 1/3 and the rate of excretion of electrolytes (except phosphate) fell to about a half of control values. Plasma renin activity rose about 3-fold and there were significant rises in haematocrit and the plasma concentrations of solids, calcium and phosphate. The patients with liver disease responded similarly. Elevated plasma VIP could contribute to salt and water retention in disease states.  相似文献   

9.
Bradykinin (BK) isolated from plasma of the African lungfish, Protopterus annectens, contains four amino acid substitutions compared with BK from mammals (Arg(1)-->Tyr, Pro(2)-->Gly, Pro(7)-->Ala, Phe(8)-->Pro). Bolus intra-arterial injections of synthetic lungfish BK (1-1000 pmol/kg body wt.) into unanaesthetised, juvenile lungfish (n=5) produced a dose-dependent increase in arterial blood pressure and pulse pressure. The maximum pressor response occurred 2-3 min after injection and persisted for up to 15 min. The threshold dose producing a significant (P<0.01) rise in pressure was 50 pmol/kg and the maximum increase, following injection of 300 pmol/kg, was 9.3 +/- 2.3 mmHg. Injection of the higher doses of lungfish BK produced a significant (P<0.05) increase in heart rate (2.8 +/- 0.8 beats/min at 100 pmol/kg). In contrast, bolus intra-arterial injections of mammalian BK, in doses up to 1000 pmol/kg, produced no significant cardiovascular effects in the lungfish. The data support the existence of a functioning kallikrein-kinin system in the lungfish and demonstrate that the ligand-binding properties of the receptor(s) mediating the cardiovascular actions of lungfish BK are appreciably different from mammalian B1 and B2 receptors.  相似文献   

10.
VIP levels were measured by radioimmunoassay in peripheral venous blood of conscious dogs. Bolus injections of the dopamine agonists apomorphine, 0.05 mg/kg, and bromocriptine, 0.2 mg/kg, were found to increase VIP levels from approximately 5 pmol/l to 150 pmol/l. The release responses were abolished by pretreatment with dopamine antagonists (haloperidol 0.1 mg/kg or halopemid 0.1 mg/kg) and by hexamethonium (1 mg/kg) a blocker of ganglionic transmission. Vagotomy did not inhibit the dopamine agonist induced output of VIP. Vagal activation by means of feeding or insulin hypoglycemia caused only minor rises of VIP levels (5-10 pmol/l). It is concluded that dopamine agonists stimulate the release of VIP from populations of neurons other than those affected by vagal and sympathetic activation. Possible sites of action for the VIP releasing effect exerted by dopamine agonists are discussed. Furthermore, it is suggested that some of the peripheral effects exerted by dopaminergic drugs are exerted via a previous release of VIP.  相似文献   

11.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

12.
The cardiovascular effects of PACAP and VIP were studied in intact conscious sheep; PACAP (0.008, 0.04, 0.2, and 1.0 nmol/min) and VIP (0.07, 0.2, 0.6, and 1.8 nmol/min) were infused in conscious sheep for periods of 10 min. For each peptide there was a dose-dependent increase in heart rate. At the highest doses tested, pulse pressure and mean arterial pressure tended to increase and decrease, respectively. However, only the decrease in mean arterial pressure following the highest dose of VIP reached significance. At the highest doses tested, heart rate increased nearly threefold during the infusion while mean arterial pressure declined by 18.5%. In individual animals the decrease in blood pressure and increase in heart rate occurred simultaneously, so that we were unable to conclude whether the increase in heart rate was due to a baroreceptor reflex.  相似文献   

13.
G J Krejs 《Peptides》1984,5(2):271-276
This study was designed to elucidate the mechanism by which somatostatin administration ameliorates or abolishes diarrhea in pancreatic cholera syndrome (PCS). Absorption (or secretion) of water and electrolytes was measured in 30-cm segments of jejunum of 18 healthy volunteers in whom PCS was mimicked by intravenous infusion of VIP. Using the triple-lumen tube technique, the intestine was perfused with a plasma-like electrolyte solution while administering intravenous saline (control), VIP (400 pmol/kg/hr), somatostatin (5000 pmol/kg/hr), or VIP plus somatostatin. VIP infusion abolished water and electrolyte absorption and somatostatin had no effect on these VIP-induced transport changes regardless of whether somatostatin infusion was started before or after VIP infusion. Somatostatin infusion had no effect on VIP plasma concentration when elevated by intravenous VIP infusion (control: 10 +/- 1 pmol/l; during VIP infusion: 108 +/- 6). In a patient with pancreatic cholera syndrome identical perfusion experiments showed jejunal water secretion (93 ml/30 cm/hr) which changed to absorption (65 ml/30 cm/hr) when somatostatin was infused (5000 pmol/kg/hr). Plasma VIP concentration fell from 145 to 74 pmol/l (normal less than 50) during somatostatin infusion. Stool weight fell from 3722 g to 819 g per 24 hours when somatostatin was given at a dose of 2500 pmol/kg/hr for two days. Our observations in healthy subjects show that somatostatin has no effect on intestinal transport at the mucosal level when circulating VIP concentration is elevated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The influences of exogenous vasoactive intestinal peptide (VIP) and substance P on the release of peroxidase from acini and true tissue kallikrein (rK1) from granular ducts of the rat submandibular gland were studied during continuous parasympathetic stimulation. Parasympathetic nerve impulses caused a moderate flow of saliva (mean +/- SD, 108+/-26 microl/g tissue/min) that had a low protein concentration (174+/-88 microg/ml). The outputs of peroxidase and rK1 were minimal (14.3+/-11.8 pmol DCF/g tissue/min and 6.5+/-3.4 nmol AFC/g tissue/min, respectively). When administered intravenously, VIP had no apparent effect on the overall flow rate, but caused a significant increase in the output of peroxidase; 450% at 1 microg/kg and a further 10-fold increase at 10 microg/kg. In contrast, substance P (1 microg/kg) evoked a marked increase in flow rate (68%), and peroxidase secretion increased only 3-fold. The output of rK1 was unaffected by either VIP or substance P. Our results support the hypothesis that acinar, but not granular duct, protein secretion is evoked by non-adrenergic, non-cholinergic peptides released from parasympathetic nerve terminals.  相似文献   

15.
Helodermin, VIP and PHI, which share a high degree of homology with secretin, have been identified in the gut but their physiological role is unknown. In this study 3 series of tests were carried out to determine the actions of helodermin, VIP and PHI on pancreatic secretion in 6 conscious dogs and amylase release from the dispersed canine pancreatic acini and to correlate the alterations in pancreatic secretory and circulatory effects in 24 anesthetized dogs. Helodermin, VIP and PHI infused i.v. in graded doses (12.5-200 pmol/kg.h) resulted in a dose-dependent increase in pancreatic HCO3 secretion reaching, respectively, 100%, 7% and 2% of secretin maximum. When combined with constant dose infusion of CCK-8 (100 pmol/kg.h), helodermin but not VIP or PHI augmented dose-dependently the HCO3 secretion. When added in various concentrations (10(-10)-10(-5)M) to the incubation medium of dispersed pancreatic acini only helodermin but not VIP or PHI increased dose-dependently amylase release reaching about 50% of CCK-8 maximum. In anesthetized dogs, the pancreatic blood flow (PBF) measured by electromagnetic blood flowmetry showed an immediate and dose-dependent increase following the injections of various doses of helodermin, VIP, PHI and secretin, the peak blood flow preceding by about 1 min the peak secretory stimulation. This study shows that helodermin resembles secretin in its potent pancreatic HCO3 stimulation but differs from VIP or PHI which are poor secretagogues but potent vasodilators. We conclude that if tested peptides are released in the gut, helodermin, like secretin, may be involved in the hormonal stimulation of exocrine pancreas, whereas VIP and PHI may serve mainly as vasodilators in the pancreatic circulation.  相似文献   

16.
Previous work demonstrated that l-arginine, the substrate for nitric oxide (NO) synthase, is carried into inner medullary collecting duct (IMCD) cells via system y+, that the major system y+ gene product in IMCD is the cationic amino acid transporter 1 (CAT1), and that blockade of l-arginine uptake in the renal medulla decreases NO and leads to systemic hypertension. The present study determined the influence of dietary sodium intake on l-arginine uptake in IMCD, on CAT1 immunoreactive protein in the renal medulla, and on the hypertensive response to blockade of l-arginine uptake in the renal medulla. Transport studies in bulk-isolated IMCD demonstrated that l-arginine uptake by IMCD was significantly greater (663 +/- 100 pmol x mg(-1) x min(-1), n = 6) in rats exposed to a low-sodium diet (0.4% NaCl) compared with rats on a normal (1% NaCl, 519 +/- 78 pmol x mg(-1) x min(-1), n = 6) or high-sodium diet (4.0% NaCl, 302 +/- 27 pmol x mg(-1) x min(-1), n = 6). Immunoblotting experiments demonstrated that CAT1 immunoreactive protein was significantly decreased by approximately 30% in rats maintained on a high-NaCl diet (n = 5) compared with rats on a low-NaCl diet (n = 5). In contrast to the l-arginine transport and immunoblotting data, in vivo blockade of l-arginine uptake led to hypertension of equal magnitude in rats maintained on a low- or high-NaCl diet. These results indicate that sodium loading leads to a decrease in immunoreactive CAT1 protein in the rat renal medulla, resulting in decreased l-arginine uptake capacity. The decrease in l-arginine uptake capacity, however, does not alter the blood pressure response to l-arginine uptake inhibition in the renal medulla.  相似文献   

17.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

18.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To identify the effects of exercise recovery mode on cutaneous vascular conductance (CVC) and sweat rate, eight healthy adults performed two 15-min bouts of upright cycle ergometry at 60% of maximal heart rate followed by either inactive or active (loadless pedaling) recovery. An index of CVC was calculated from the ratio of laser-Doppler flux to mean arterial pressure. CVC was then expressed as a percentage of maximum (%max) as determined from local heating. At 3 min postexercise, CVC was greater during active recovery (chest: 40 +/- 3, forearm: 48 +/- 3%max) compared with during inactive recovery (chest: 21 +/- 2, forearm: 25 +/- 4%max); all P < 0.05. Moreover, at the same time point sweat rate was greater during active recovery (chest: 0.47 +/- 0.10, forearm: 0.46 +/- 0.10 mg x cm(-2) x min(-1)) compared with during inactive recovery (chest: 0.28 +/- 0.10, forearm: 0.14 +/- 0.20 mg x cm(-2) x min(-1)); all P < 0.05. Mean arterial blood pressure, esophageal temperature, and skin temperature were not different between recovery modes. These data suggest that skin blood flow and sweat rate during recovery from exercise may be modulated by nonthermoregulatory mechanisms and that sustained elevations in skin blood flow and sweat rate during mild active recovery may be important for postexertional heat dissipation.  相似文献   

20.
Induction of anesthesia is accompanied by modest hyperglycemia and a decreased plasma insulin concentration. Most insulin is secreted in discrete pulses occurring at approximately 6- to 8-min intervals. We sought to test the hypothesis that anesthesia inhibits insulin release by disrupting pulsatile insulin secretion in a canine model by use of direct portal vein sampling. We report that induction of anesthesia causes an abrupt decrease in the insulin secretion rate (1.1 +/- 0.2 vs. 0.7 +/- 0.1 pmol. kg(-1). min(-1), P < 0.05) by suppressing insulin pulse mass (630 +/- 121 vs. 270 +/- 31 pmol, P < 0.01). Anesthesia also elicited an approximately 30% higher increase in insulin pulse frequency (P < 0.01) and more orderly insulin concentration profiles (P < 0.01). These effects were evoked by either sodium thiamylal or nitrous oxide and isoflurane. In conclusion, anesthesia represses insulin secretion through the mechanism of a twofold blunting of pulse mass despite an increase in orderly pulse frequency. These data thus unveil independent amplitude and frequency controls of beta-cells' secretory activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号