首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation of human neutrophils with the chemotactic N-formyl peptide causes production of oxygen radicals and conversion of monomeric actin (G-actin) to polymeric actin (F-actin). The effects of the binary botulinum C2 toxin on the amount of F-actin and on neutrophil cell responses were studied. Two different methods for analyzing the actin response were used in formyl peptide-stimulated cells: staining of F-actin with rhodamine-phalloidin and a transient right angle light scatter. Preincubation of neutrophils with 400 ng/ml component I and 1,600 ng/ml component II of botulinum C2 toxin for 30 min almost completely inhibited the formyl peptide-stimulated polymerization of G-actin and at the same time decreased the amount of F-actin in unstimulated neutrophils by an average of approximately 30%. Botulinum C2 toxin preincubation for 60 min destroyed approximately 75% of the F-actin in unstimulated neutrophils. Right angle light scatter analysis showed that control neutrophils exhibited the transient response characteristic of actin polymerization; however, after botulinum C2 toxin treatment, degranulation was detected. Single components of the binary botulinum C2 toxin were without effect on the actin polymerization response. Fluorescence flow cytometry and fluorospectrometric binding studies showed little alteration in N-formyl peptide binding or dissociation dynamics in the toxin-treated cells. However, endocytosis of the fluorescent N-formyl peptide ligand-receptor complex was slower but still possible in degranulating neutrophils treated with botulinum C2 toxin for 60 min. The half-time of endocytosis, estimated from initial rates, was 4 and 8 min in control and botulinum C2 toxin-treated neutrophils, respectively.  相似文献   

2.
3.
Effect of botulinum D toxin on neutrophils   总被引:1,自引:0,他引:1  
Activated botulinum D toxin ADP-ribosylates a 22 kDa molecular weight protein in homogenates obtained by sonication of a suspension of rabbit peritoneal neutrophils. The ADP-ribosylation catalyzed by activated botulinum D toxin is inhibited in homogenates obtained from cells pretreated with the toxin, suggesting that it is able to enter into these cells and be activated by them. The rise in intracellular concentration of free calcium in toxin treated cells stimulated by fMet-Leu-Phe is similar to that found in control cells. The basal concentration of intracellular free calcium is significantly elevated in neutrophils treated with the intact but not with the activated form of the botulinum D toxin. Superoxide generation in control and native toxin treated cells stimulated with fMet-leu-Phe, phorbol 12-myristate 13-acetate or opsonized zymosan is the same. The release of beta-glucosaminidase produced by fMet-Leu-Phe or Concanavalin A in botulinum D toxin treated neutrophils was slightly higher than the corresponding release in control cells. Furthermore, the fMet-Leu-Phe-induced increase in the amount of actin associated with the cytoskeleton is not inhibited by botulinum D toxin. These results suggest that the 22 kDa protein which can be ADP-ribosylated by botulinum D toxin is not involved in these stimulated neutrophil responses.  相似文献   

4.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

5.
All of the 8 strains that were previously assumed to be nontoxigenic Clostridium botulinum type C were re-examined for their toxigenicity and were demonstrated by trypsinization of the culture filtrates to produce C2 toxin under improved cultural conditions. One per cent glucose added to trypticase peptone medium enhanced C2 toxin production. The larger the spore population, the higher the C2 toxicity and when spore population was smaller than a level of 10(4)/ml, no C2 toxicity was demonstrated. The C2 toxin was produced only during sporulation and not during vegetative growth.  相似文献   

6.
The lymphocyte signal transduction, as determined by intracellular free Ca2+ mobilization of concanavalin A-stimulated T lymphocytes and of anti-immunoglobulin mu chain antibody-stimulated B lymphocytes, was suppressed in spleen cells from mice injected with murine P1.HTR mastocytoma-induced ascites and in spleen cells treated with the ascites in vitro. The suppression was observed both at the peak level and in the reactive pattern of Ca2+ influx. In the suppression, the ascites were replaceable with tumor culture supernatants or tumor homogenates. Correspondingly, primary and secondary cytotoxic T lymphocyte (CTL) responses of DBA/2 mice to allogeneic antigen were also significantly suppressed by injection of the syngeneic P1.HTR tumor-derived ascites. This new finding suggested that the mechanism of the tumorous ascites or of the tumor-derived factor-mediated immunosuppression involves at least in part the suppression of the early event of the signal transduction for lymphocyte activation.  相似文献   

7.
We attempted to characterize ADP-ribose-amino acid bonds formed by various bacterial toxins. The ADP-ribose-arginine bond formed by botulinum C2 toxin in actin was cleaved with a half-life of about 2 h by treatment with hydroxylamine (0.5 M). In contrast, the ADP-ribose-cysteine bond formed by pertussis toxin in transducin and the ADP-ribose-amino acid linkage formed by botulinum ADP-ribosyltransferase C3 in platelet cytosolic proteins were not affected by hydroxylamine. HgCl2 cleaved the ADP-ribose-amino acid bond formed by pertussis toxin in transducin but not those formed by botulinum C2 toxin or botulinum ADP-ribosyltransferase C3 in actin and platelet cytosolic proteins, respectively. NaOH (0.5 M) cleaved the ADP-ribose-amino acid bonds formed by botulinum C2 toxin and pertussis toxin but not the one formed by botulinum ADP-ribosyltransferase C3. The data indicate that the ADP-ribose bond formed by botulinum ADP-ribosyltransferase C3 differs from those formed by the known bacterial ADP-ribosylating toxins.  相似文献   

8.
中性粒细胞属非特异性免疫细胞,其表面可表达CXCR1和CXCR2.IL-8是其共同配体,它们彼此结合激活后续级联信号传导,产生一系列生物学效应,在介导炎症反应、促进血管新生、维持中性粒细胞稳态等起重要作用.Reparixin是非竞争变构的CXCR1和CXCR2阻滞剂,可抑制中性粒细胞过度趋化、迁移介导的炎症反应.  相似文献   

9.
Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments   总被引:2,自引:0,他引:2  
C Weigt  I Just  A Wegner  K Aktories 《FEBS letters》1989,246(1-2):181-184
The effect of nonmuscle actin ADP-ribosylated by botulinum C2 toxin on the polymerization of nonmuscle actin was investigated in order to clarify whether nonmuscle actin is converted into a capping protein by ADP-ribosylation. ADP-ribosylated actin was found to decrease the rate of polymerization of actin filaments which are free at both ends. ADP-ribosylated actin turned out to have no effect on the rate or extent of polymerization at the pointed ends of actin filaments the barbed ends of which were capped by gelsolin. The monomer concentration reached at the final stage of polymerization was similar to the critical concentration of the pointed ends of actin filaments. The results suggest that nonmuscle actin ADP-ribosylated by botulinum C2 toxin acts as a capping protein which binds to the barbed ends to inhibit polymerization.  相似文献   

10.
In the culture fluid of a hemagglutinin-positive strain of Clostridium botulinum type C, two toxins of different molecular size, hemagglutinin positive and negative, were separated by sucrose density gradient centrifugation.  相似文献   

11.
K Oguma  A Nakane    H Iida 《Applied microbiology》1978,35(2):462-464
In the culture fluid of a hemagglutinin-positive strain of Clostridium botulinum type C, two toxins of different molecular size, hemagglutinin positive and negative, were separated by sucrose density gradient centrifugation.  相似文献   

12.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

13.
Hemagglutinating and binding properties of botulinum C2 toxin   总被引:1,自引:0,他引:1  
To characterize the binding substance(s) for botulinum C2 toxin, the hemagglutinating activity of component II of botulinum C2 toxin (C2II) was studied by hemagglutination and hemagglutination inhibition. Human and animal erythrocytes were agglutinated by trypsinized C2II much more strongly than by untreated C2II. Trypsinized C2II agglutinated neuraminidase-treated erythrocytes more strongly than intact, trypsin- and pronase-treated ones. On the other hand, trypsin- and pronase-treated erythrocytes were more weakly hemolyzed by trypsinized C2II than intact and neuraminidase-treated ones, and trypsinized C2II showed both hemagglutinating and hemolytic activities to these erythrocytes. Hemagglutination of trypsin-treated human type B erythrocytes was inhibited by galactose, N-acetylgalactosamine, N-acetylglucosamine, L-fucose and mannose. Thyroglobulin and bovine salivary mucin were much stronger inhibitors. From these findings, the binding substance(s) for botulinum C2 toxin on erythrocytes is(are) suggested to be glycoprotein(s).  相似文献   

14.
As experimental evidence suggests that leptin may have direct effects on peripheral tissues, we investigated some of the transductional molecules induced by leptin in C2C12 cells. In immunoprecipitation experiments using anti-p85 antibodies (a regulatory subunit of phosphatidylinositol-3-kinase; PI3K), we observed a significant increase in PI3K activity. Immunoblot analyses showed that Akt, GSK3, ERK1, ERK2, and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation significantly increased after leptin treatment. Protein kinase C (PKC)-zeta was also activated by leptin, as documented by an immunocomplex kinase assay and immunoblotting experiments. The treatment of C2C12 cells with Wortmannin before leptin administration inhibited induction of the phosphorylation of ERKs (extracellular signal-regulated kinases) but not that of p38 MAPK, whereas pre-treatment with a PKC-zeta inhibitor partially decreased ERK phosphorylation. Taken together, our in vitro results further support the hypothesis that leptin acts acutely on skeletal muscle tissue through some of the components of insulin signalling, including PKC-zeta.  相似文献   

15.
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.  相似文献   

16.
An in vitro model system was used to define the mechanism of interaction between human neutrophils and lymphocytes. Blood mononuclear leukocytes were exposed to purified neutrophils in the presence of a neutrophil-activating agent (phorbol ester, lectin, or opsonized particle). The treated mononuclear cells displayed a marked decrease in both natural killer activity and mitogen-dependent DNA synthesis, but no change in viability. This functional suppression was dependent on neutrophil number, stimulus concentration, and duration of exposure. Lymphocytes were protected by addition of catalase, but not superoxide dismutase. Neutrophils defective in oxidative metabolism (chronic granulomatous disease) failed to suppress lymphocyte function unless an H2O2-generating system, glucose oxidase plus glucose, was added. The patients' neutrophils provided a factor, possibly myeloperoxidase, which interacted with the glucose oxidase system. The immunosuppressive effect of normal neutrophils was diminished when chloride was omitted from the cultures and was enhanced when chloride was replaced by iodide. Myeloperoxidase-deficient neutrophils were partially defective in suppressing lymphocytes and this was corrected by addition of purified myeloperoxidase. Paradoxically, azide caused enhancement of suppression that depended on the neutrophil oxidative burst, but not on myeloperoxidase and was mediated at least in part by an effect of azide on the target mononuclear leukocytes. These data indicate that suppression of lymphocyte function by activated neutrophils is mediated by the secretion of myeloperoxidase and H2O2 that react with halides to form immunosuppressive products. Moreover, the mononuclear leukocytes contain an azide-sensitive factor, probably catalase, which provides partial protection against injury by neutrophil products. These dynamic interactions may be important local determinants of the immune response.  相似文献   

17.
Many bacteria that cause disease have the capacity to enter into and live within eukaryotic cells such as epithelial cells and macrophages. The mechanisms used by these organisms to achieve and maintain this intracellular lifestyle vary considerably, but most mechanisms involve subversion and exploitation of host cell functions. Entry into non-phagocytic cells involves triggering host signal transduction mechanisms to induce rearrangement of the host cytoskeleton, thereby facilitating bacterial uptake. Once inside the host cell, intracellular pathogens either remain within membrane bound inclusions or escape to the cytoplasm. Those living in the cytoplasm can further pirate the host actin system, using actin as a mechanism to facilitate movement within and between host cells. Organisms remaining within the vacuole have specialized mechanisms for intracellular survival and growth which involve additional communication with the host cell. Some of the processes involved in the various steps of facultative intracellular parasitism are discussed in the context of subverting the host cell cytoskeleton and signal transduction pathways for bacterial benefit.  相似文献   

18.
In hypogravity conditions unloading of skeletal muscle fibres causes alterations in skeletal muscle structure and functions including growth, gene expression, cell differentiation, cytoskeletal organization, contractility and plasticity. Recent studies have identified sphingosine I -phosphate (SPP) as a lipid mediator capable of eliciting intracellular Ca2+ transients, cell proliferation, differentiation, suppression of apoptosis, as well as cell injury repair. The aim of this research is to evaluate a possible involvement of SPP in skeletal muscle cells differentiation and repair from space-flight damage. Particularly, we investigated the Ca2+ sources and the changes on the cytoskeletal rearrangement induced by SPP in a mouse skeletal (C2C12) myoblastic cell line. Confocal fluorescence imaging revealed that SPP elicited Ca2+ transients which propagated throughout the cytosol and nucleus. This response required extracellular and intracellular Ca2+ mobilization. SPP also induced cell contraction through a Ca2(+)- independent/Rho-dependent pathway. The nuclear Ca2+ transients are suggestive for an action of SPP in the differentiation program and damage repair.  相似文献   

19.
The reverse reaction of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota-toxin was studied. In the presence of nicotinamide (30-50 mM) C2 toxin and iota-toxin decreased the radioactive labeling of [32P]ADP-ribosylated actin and catalyzed the formation of [32P]NAD. The pH optima for both reactions were 5.5-6.0. Concomitant with the removal of ADP-ribose, the ability of actin to polymerize was restored and actin ATPase activity increased. Neither ADP-ribosylation nor removal of ADP-ribose was observed after treatment of actin with EDTA, indicating that the native structure of actin is required for both reactions. ADP-ribosylation of platelet actin by C2 toxin was reversed by iota-toxin, confirming recent reports that both toxins modify the same amino acid in actin. However, C. botulinum C2 toxin was not able to cleave ADP-ribose from skeletal muscle actin which had been incorporated by iota-toxin, corroborating the different substrate specificities of both toxins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号