首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nest predation is a major limiting factor for songbird productivity, including the federally endangered black-capped vireo (Vireo atricapilla). However, nest predator information is limited across the range of the black-capped vireo in central and southwest Texas. We monitored nests in 3 counties within the breeding range of black-capped vireos in Texas in 2008 and 2009 and used continuous recording digital video cameras to record predation events. We video-monitored 115 nests and documented 39 predation events by at least 9 predator species. Overall, we observed avian species (51%, n = 39), specifically brown-headed cowbirds (Molothrus ater; n = 12), and snakes (26%, n = 39) as the most frequent nest predators. The estimated daily nest survival rate during the laying and incubation stage was 0.985 (95% CI = 0.967–0.993) and 0.944 (95% CI = 0.921–0.961) during the nestling stage. In addition, we analyzed models of predator-specific nest predation using multinomial logistic regression. Effect of nest height on predation rate was significant for snakes; nest stage was significant for nests depredated by avian predators. By identifying and increasing our knowledge of nest predators and vegetation characteristics associated with greater risk of predation in multiple locations within the black-capped vireo's range, we can effectively manage habitat to benefit recovery efforts of the species. © 2012 The Wildlife Society.  相似文献   

2.
KAREL WEIDINGER 《Ibis》2009,151(2):352-360
I used time-lapse videotaping to identify predators of open songbird nests in fragmented deciduous woodland (nine plots, 2–10 ha each) in the Czech Republic from 2002 to 2006. I documented 22 species of predators at 171 nests of 13 species (mainly Blackcap Sylvia atricapilla , Song Thrush Turdus philomelos , Common Blackbird Turdus merula , Yellowhammer Emberiza citrinella and Chaffinch Fringilla coelebs ). The main predators were Pine Marten Martes martes (37% of 178 predation events), Jay Garrulus glandarius (29%), Buzzard Buteo buteo (7%) and Great Spotted Woodpecker Dendrocopos major (7%); mammals accounted for 48% of total predation. At least 3% of nests were depredated by multiple predators. In spite of their local abundance, Hooded Crows Corvus cornix did not present a serious threat for shrub nesting songbirds (< 1% of total predation). No predation by mice was recorded, suggesting that their importance has been overestimated in artificial nest studies. The proportional species composition of predators depended on which species occupied the monitored nest and location (study plot), but not on the year or the time of season. Corvids and raptors accounted for a relatively larger percentage of total predation of small ('warblers') and large ('thrushes') prey species, respectively, whereas carnivores were important predators of all prey species. Active nests of thrushes were only rarely robbed by Jays (< 4% of 52 events), presumably due to parental nest defence. Predation by woodpeckers was spatially clumped, probably due to individual foraging specialization. Predation by the other major predators was documented on most/all study plots.  相似文献   

3.
ABSTRACT Although nest predation is often the single largest source of mortality in avian populations, manipulative studies to determine predator impacts on nest survival are rare, particularly studies that examine impacts of mid-size mammalian predators (hereafter, mesopredators) on nest survival of shrub-nesting birds. We quantified nest survival and identified nest predators of shrub-nesting songbirds within 4 large (approx. 40-ha) exclosures and 4 control sites within a longleaf pine (Pinus palustris) ecosystem. During 2003–2006, we located and monitored 535 shrub nests (222 with videography) for 4,804 nest-days to quantify daily nest survival and document predation events. We found no support for a treatment effect, suggesting mesopredators had little impact on daily nest survival (0.9303 in controls and 0.9260 in exclosures) of shrub-nesting songbirds. For the 5 most commonly monitored species, daily nest survival within species was constant. Our analysis suggested that shrub nests were most vulnerable during the nestling stage and presence of cameras on nests increased survival with the increase in survival being more pronounced during the incubation stage. We filmed 107 nest predation events, identifying predators at 88 nests. Of these 88 nests, snakes caused 33%, red imported fire ants (hereafter fire ants, Solenopsis invicta) 28%, raptors 17%, corvids 8%, mesopredators 6%, and small mammals 8% of nest predations. Cause-specific nest predation in controls and exclosures did not differ from expectation, providing evidence that compensatory predation did not occur. Nest predators differed from expectation with regard to nest stage; fire ants and raptors only depredated nests during the nestling stage. Presence of cameras had no effect on nest abandonment. Fire ants were the most prevalent nest predator, and nest predation by fire ants was only observed on nestlings, potentially reducing likelihood of renesting. Magnitude and timing of fire ant predation suggests that fire ants may be the most influential nest predator of shrub-nesting birds within the longleaf pine ecosystem. Our data suggest that controlling mesopredators will have no effect on nest success of shrub-nesting birds within longleaf pine forests.  相似文献   

4.
Capsule Bare ground increases artificial nest predation in olive groves.

Aims To assess the effect of different soil management regimes on nest predation rates in olive groves.

Methods We performed nest predation experiments with artificial nests during the breeding season in 2013, in two areas of southern Spain. Each artificial nest (n?=?300) contained three quail Coturnix eggs, two of which were unmanipulated and the third one was emptied and injected with plaster. Predators were identified by marks on eggs filled with plaster.

Results Ground nests were significantly more depredated, irrespective of the presence of ground cover; tree nests were less depredated in fields with ground cover. There was a clear difference in nest predators of ground and tree nests. Rodents were the most frequent predators of tree nests.

Conclusion Lower predation rates of tree nests in orchards with ground cover are probably linked to a change in the foraging behaviour of rodents, which in these more complex habitats might be restricted by rodents' own risk of predation. This study underscores the important role of agricultural practices in preserving farmland bird communities, particularly tree-nesting species, suggesting that for this group, implementation of ground cover in olive groves might enhance breeding success by reducing nest predation rates.  相似文献   

5.
Capsule Predation was the main cause of nest failure, but predation rates have remained unchanged since the 1980s. Eurasian Jays Garrullus glandarius were the most common predator.

Aims To quantify, and compare, nest predation rates for 1982–84 and 2009–11, and to identify predators of Wood Warbler Phylloscopus sibilatrix nests in Welsh oakwoods.

Methods During 2009–11, 167 Wood Warbler nests were monitored and purpose-built miniature nest cameras deployed at 73 of them. Nest predation rates were compared with 67 nests monitored during 1982–84.

Results Of 167 nests monitored from 2009 to 2011, 62 failed due to predation (32/73 camera nests, 30/94 non-camera nests), giving an overall Daily Survival Rate (DSR?±?se) of 0.979?±?0.003. This was not significantly different from the rate during 1982–84 (0.967?±?0.006). In 2009–11, the DSR of nests declined temporally during the season at both the egg and chick stages. For chick stage nests, DSR varied annually and nonlinearly with age of nestlings. There was no evidence for an effect of cameras at either stage. Of 32 camera nests lost to predation, the predator was identified from 28, resulting in 30 predators being identified. There was one case of multiple predators at a single nest. The majority of nest predation was carried out by birds (28/30), predominantly Eurasian Jays (18/28), but also Common Buzzards Buteo buteo (5/28), Great Spotted Woodpeckers Dendrocopos major (3/28) and Eurasian Sparrowhawks Accipiter nisus (2/28). There was one predation by both a Eurasian Badger Meles meles and a Red Fox Vulpes vulpes. There were no records of Grey Squirrels Sciurus carolinensis depredating nests.

Conclusions Nest predation rates were similar in both periods, suggesting that increased rates of nest predation have not been driving the decline of the Wood Warbler population in Wales. Deployment of nest cameras did not affect nest survival rates and were successful in identifying nest predators, the majority of which were avian, especially Eurasian Jays. Knowledge of the identity of nest predators can aid the development of conservation measures.  相似文献   

6.
Human modification of habitats can reduce reproductive success by providing novel cues to which birds may respond with behaviors that are actually maladaptive in those environments. Ad libitum human‐provided foods may provide the perception that urban habitats are food‐rich even as natural food availability decreases. Similarly, human activity may increase the perception that predation risk is high even as natural predators may decrease in abundance. In response, birds may reduce parental care with a subsequent cost to successful reproduction. Florida Scrub‐Jays (Aphelocoma coerulescens) in suburban areas have lower nest success during the nestling period than do wildland jays, possibly the result of such maladaptive responses, but maybe because of ecological differences with wildlands. We manipulated adult perception of predation risk and the availability of nestling foods in suburban and wildland areas to determine if these factors influenced parental care and nestling begging, and if the behavioral responses of adults influence nest survival during the nestling stage. Experimentally increasing perception of predation risk reduced parental care by both suburban and wildland females, but did not influence care by males. Increasing food availability, but not predation risk, had little influence on parental care, but resulted in decreased nestling begging rates and an increase in the frequency (pitch) of begging calls in both habitats. However, neither parental care nor food availability influenced nest survival during the nestling stage. Instead, the presence of helpers was the most important variable in nest survival analyses, suggesting that habitat‐specific differences in nest survival during the nestling stage were not simply the result of maladaptive parental behavior or shortage of nestling food resources in the suburban habitat. The lack of helpers combined with ecological differences, such as the abundance of nest predators, may be why fewer nests of Florida Scrub‐Jays survive during this stage in suburban areas.  相似文献   

7.
Variation in nest predation levels associated with rainforest fragmentation (edge effects) was assessed in Australia's Wet Tropics bioregion. Artificial nests were placed in the forest understorey at seven edge sites where continuous forest adjoined pasture, seven interiors (about 1 km from the edge), and six linear riparian forest remnants (50–100 m wide) that were connected to continuous forest. Four nest types were also compared, representing different combinations of two factors; height (ground, shrub) and shape (open, domed). At each site, four nests of each type, containing one quail egg and two model plasticine eggs, were interspersed about 15 m apart within a 160 m transect during September–October 2001. Predators were identified from marks on the plasticine eggs. The overall depredation rate was 66.5% of 320 nests' contents damaged over a three-day period. Large rodents, especially the rat Uromys caudimaculatus, and birds, especially the spotted catbird Ailuroedus melanotis, were the main predators. Mammals comprised 56.5% and birds 31.0% of predators, with 12.5% of unknown identity. The depredation rate did not vary among site-types, or between open and domed nests, and there were no statistically significant interactions. Nest height strongly affected depredation rates by particular types of predator; depredation rates by mammals were highest at ground nests, whereas attacks by birds were most frequent at shrub nests. These effects counterbalanced so that overall there was little net effect of nest height. Mammals accounted for 78.4% of depredated ground nests and birds for at least 47.4% of shrub nests (and possibly up to 70.1%). The main predators were species characteristic of rainforest, rather than habitat generalists, open-country or edge specialists. For birds that nest in the tropical rainforest understorey of the study region, it is unlikely that edges and linear remnants presently function as ecological population sinks due to mortality associated with increased nest predation.  相似文献   

8.
In countries such as the UK, USA and Australia, approximately half of all households provide supplementary food for wild birds, making this the public's most common form of active engagement with nature. Year‐round supplementary feeding is currently encouraged by major conservation charities in the UK as it is thought to be of benefit to bird conservation. However, little is understood about how the provision of supplementary food affects the behaviour and ecology of target and non‐target species. Given the scale of supplementary feeding, any negative effects may have important implications for conservation. Potential nest predators are abundant in urban areas and some species frequently visit supplementary feeding stations. We assess whether providing supplementary food affects the likelihood of nest predation in the vicinity of the feeder, by acting as a point attractant for potential nest predators. We provided feeding stations (empty, peanut feeder, peanut feeder with guard to exclude potential nest predators) in an area of suburban parkland in the UK and monitored the predation rate of eggs placed in artificial nests located at distances that replicated the size of typical suburban gardens. Nest predators (Magpies Pica pica, Grey Squirrels Sciurus carolinensis) were frequent visitors to filled feeders, and predation caused by Magpies, European Jays Garrulus glandarius and Grey Squirrels was significantly higher when nests were adjacent to filled feeders. The presence of a feeder guard did not significantly reduce nest predation. As supplementary feeding is becoming increasingly common during the breeding season in suburban habitats, we suggest that providing point attractants to nest predators at this time may have previously unconsidered consequences for the breeding success of urban birds.  相似文献   

9.
Brood parasitism and nest predation are major causes of reproductive failure for many bird species nesting in fragmented landscapes. While brood parasites and predators may act independently, they could also interact if brood parasites increase the likelihood that predators detect nests. In this study, we examined the interaction between cowbird parasitism and nest predation in a 10 year study on 466 American redstart Setophaga ruticilla nests in central Alberta, Canada. We used advanced nest survival models to examine the support for three mechanisms that might lead to a positive correlation between brood parasitism and nest predation: 1) the presence of a cowbird nestling might increase the detection of the nest by predators, 2) nests with lower cover are more likely to be detected by both cowbirds and predators, and 3) cowbirds and predators may co-occur in landscapes of similar structure. Twelve percent of nests were parasitized and those nests had a 16–19% higher rate of failure due to predators compared to unparasitized nests. Daily nest predation rates increased during the nestling stage for both groups, but more strongly for parasitized nests. Loud begging by the cowbird nestling and/or higher parental feeding rates for the cowbird may have increased nest detectability to predators. Brood parasitism and nest predation were also positively related to forest cover, indicating landscape level effects were influential. Most nest predators were forest species and we suspect cowbirds responded positively to forest cover because of the increased abundance of songbird hosts. Nest-site features had less of an impact on nest predation or brood parasitism, although nests with higher overhead cover were less susceptible to predators. Our study shows how multiple mechanisms, particularly the behavioral effects of the brood parasite nestling and landscape structure, can lead to a positive relationship between nest predation and brood parasitism.  相似文献   

10.
Alexander Skutch predicted that nest predation will increase with activity at nests, and that predation should be greatest during the nestling stage when parents are feeding young. We tested this hypothesis using three ecologically similar grassland bird species nesting on the high altitude grasslands of Wakkerstroom, South Africa. Parental activity, measured as adult arrival and departure frequency from the nest, was greater during the nestling than incubation stage. Nest predation, however, did not increase with parental activity between these stages in all three study species. However, nest site effects could have confounded this result. We therefore conducted an experiment that controlled for parental activity (by reusing natural nests of the study species with artificial clutches) in order to test for nest site effects. Nests that had a high rate of predation when used by active parents had a correspondingly high rate of depredation when the same nests were reused with artificial clutches (i.e. after controlling for parental activity). This result supports the notion that variation in nest site quality is the primary factor affecting nest predation rate. We also tested whether high predation during incubation is related to nest site effects. Nest predation rates of experimental clutches placed in reused nests that had been originally (when active parents were present) depredated during incubation stage were significantly higher than those that were originally depredated during the nestling stage. Finally, once nest site effects were accounted for, nest predation showed a positive increase with parental activity during the nestling stage across species.  相似文献   

11.
Low hatching success may limit progress towards reaching productivity goals for Atlantic Coast piping plover (Charadrius melodus) recovery, despite management strategies to protect eggs from predators and decrease human disturbance of birds on nests. We measured piping plover hatching success on Eastern Long Island beaches and identified the major causes of egg failure to better understand why eggs that were otherwise intact (not depredated or destroyed by tidal flooding) failed to hatch. We documented egg and nest fates, dissected contents of unhatched eggs to determine viability, and recorded human and predator activity near a subset of plover nests on Suffolk County Parks properties. The low hatching success we recorded (0.60) in 2006 and 2007 would require higher chick survival rates than are typically observed for piping plovers to meet recovery targets for productivity. Few eggs showed signs of poor viability and overall egg hatchability was comparable to other ground nesting birds. Most egg failure was due to either depredation at unexclosed nests or nest abandonment by adults. The best predictor of nest abandonment was the maximum number of red fox tracks (Vulpes vulpes) counted on nearby transects (β = −1.16, 95% CI: −2.0 to −0.3) and we found evidence that plovers abandoned eggs in response to predation risk (e.g., a fox circling a nest exclosure). Adults from abandoned nests may have deserted eggs or been depredated. In either case, intact and viable eggs were abandoned. Nest abandonment was not related to human activity near nests, which were buffered from human disturbance by symbolic string fencing. Our results suggest that depredation and nest abandonment (e.g., desertion or death of adults) due to predator disturbance, not human disturbance or poor egg viability, contributed to the low hatching success we recorded. Active predator removal in addition to modification of predator exclosure use and design may be necessary to prevent direct (egg depredation) and indirect (nest abandonment) negative effects of predators on hatching success. © 2010 The Wildlife Society.  相似文献   

12.
It has been proposed that some specific locations of bird's nests have higher intrinsic chances of being depredated than other locations. This predicts that fates of consecutive nesting attempts at the same site should be repeatable. We used 20 pairs of old thrush nests to simulate repeated nesting attempts at the same sites, both within and between breeding seasons (n=40  sites×2  trials×2  years=160). Each nest was monitored by a camera to record multiple predation events and to identify predators. Predation by all predator species was repeatable during a 15-day trial. Predation by principal predators (jay Garrulus glandarius , marten Martes martes / foina ) and total predation (all species combined) was not correlated within pairs of simultaneously exposed nests or within samples of nests from particular study plot, and not repeatable for individual nests between-trials or between-years. These findings suggest short-term effect of predator memory causing revisitation of previously depredated nests during a current nesting trial (all predators); do not support an effect of nest site features on multiple nest discoveries and/or an effect of nest location on repeated random encounters with the same nest (principal predators). Long-term repeatability and correlation within pairs of simultaneously exposed nests was detectable only in occasional predators (great spotted woodpecker Dendrocopos major , possibly also squirrel Sciurus vulgaris ), which suggests effect of nest location combined with site fidelity and individual foraging specialization of these predators. We conclude that repeatability of nest predation depends on the time scale considered and the local predator community. We caution against spurious findings of repeatable nest predation resulting simply from statistical properties of correlation in binary data (nest fates).  相似文献   

13.
Begging and the risk of predation in nestling birds   总被引:12,自引:7,他引:5  
Theoretical models of the evolution of begging in nestling passerinesassume that begging is costly, either energetically or in termsof predation. However, few empirical measures of these costsexist. We examined whether nestling begging calls could attractpredators to nests by comparing predation rates at artificialnests with and without playbacks of tree swallow begging calls.Nests were baited with quail eggs and placed in pairs on theground or in modified nest-boxes. Nests with playbacks of beggingcalls were depredated before control nests significantly moreoften in both the ground and nest-box trials, suggesting thatpredators may use begging calls to locate nests. These resultssuggest that the risk of nest predation may be increased becauseof calling by nestlings and provide further support for theassumption that conspicuous begging is costly in terms of predation  相似文献   

14.
In colonial seabirds, nesting density, egg-laying date and nest microhabitat affect the probability of eggs being taken by avian predators. Jungle Crows (Corvus macrorhynchos) are dominant predators of eggs of Black-tailed Gulls (Larus crassirostris). Factors affecting the probability of gulls allowing the crows to attack their nests or depredate their eggs and the probability of eggs being taken were studied by direct observation and egg census, respectively. The effect of vegetation heights, position in the colony, egg-laying date and neighbour nests on the probability of eggs being taken were examined at multiple spatial scales. Gull nests were depredated more easily by larger groups of crows. Nests in peripheral areas (<4 m from the edge of the colony) were also depredated more easily by the crows walking on the ground. Although the nests where eggs were laid early in the season were depredated more frequently, such nests highly synchronised in egg laying within a <2-m radius were less likely to be depredated than less-synchronised nests. The nests in tall vegetation were less likely to be depredated though those having neighbour nests in tall vegetation were not. The number of neighbour nests did not affect the probability of eggs being taken. Antipredation effects of nesting microhabitats vary with spatial scales at which the crows search and attack the nests of gulls.  相似文献   

15.
For ground‐nesting waterfowl, the timing of egg hatch and duckling departure from the nest may be influenced by the risk of predation at the nest and en route to wetlands and constrained by the time required for ducklings to imprint on the hen and be physically able to leave the nest. We determined the timing of hatch, nest departure, and predation on dabbling duck broods using small video cameras placed at the nests of mallard (Anas platyrhynchos; n = 26), gadwall (Mareca strepera; n = 24), and cinnamon teal (Anas cyanoptera; n = 5). Mallard eggs began to hatch throughout the day and night, whereas gadwall eggs generally started to hatch during daylight hours (mean 7.5 hr after dawn). Among all species, duckling departure from the nest occurred during daylight (98%), and 53% of hens typically left the nest with their broods 1–4 hr after dawn. For mallard and gadwall, we identified three strategies for the timing of nest departure: (a) 9% of broods left the nest the same day that eggs began to hatch (6–12 hr later), (b) 81% of broods left the nest the day after eggs began to hatch, and (c) 10% of broods waited 2 days to depart the nest after eggs began to hatch, leaving the nest just after the second dawn (27–42 hr later). Overall, eggs were depredated at 10% of nests with cameras in the 2 days prior to hatch and ducklings were depredated at 15% of nests with cameras before leaving the nest. Our results suggest that broods prefer to depart the nest early in the morning, which may best balance developmental constraints with predation risk both at the nest and en route to wetlands.  相似文献   

16.
ABSTRACT Nest predation is the primary cause of nest failure for Greater Sage‐Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage‐Grouse nests (camera, N= 55; no camera, N= 32) in northeastern Nevada and south‐central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage‐Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage‐Grouse nest failure in the face of land‐use changes in the Intermountain West.  相似文献   

17.
Nest predation is the leading cause of nesting failure. Thus it is a crucial area of research needed to inform conservation management and to understand the life history of birds. I surveyed the literature to review the identity of nest predators and the factors affecting nest predation, in Australia using 177 studies. Overall, 94 nest predators were identified when incorporating artificial nests, 69 without. Using only natural nests, the Pied Currawong Strepera graculina was the most frequently reported nest predator. Five nest predators, including Pied Currawong, depredated 40% of the prey measured by the number of prey species taken. Yet, 60% of predation was carried out by the other 64 species, which included by the order of importance birds, mammals, reptiles, frogs and ants. Predation at cup and dome nests was more frequently reported than at burrow, ground and hollow nests. Only 28% of predators were observed at both artificial and natural nests suggesting artificial nests have limited, but not negligible, ability as tools for identifying predators. There was a highly significant and positive correlation between predator and prey masses. The predator prey mass ratio was calculated with a mean 0.25 and a median 0.22, a result closely matching with the proportional size of prey taken by raptors. The finding that predator size is proportional to prey opens a pathway for more life history and conservation research.  相似文献   

18.
Three factors and their interaction effects are increasingly recognized as important determinants of nest predation: nest concealment, nest height, and predator type. The risk of nest predation is predicted to vary across these variables because of nest detectability and accessibility. In general, however, few studies examine how these three variables interact in relation to nest predation, focusing instead on either nest concealment or nest height (whereby predator identity is usually not known). In this study, we examine the role of nest concealment and nest height for nest survival using both artificial and natural nests in the superb fairy-wren (Malurus cyaneus). We indirectly identified potential predators through marks left on artificial eggs and footprints left on tracking tunnels. Predation level at artificial nests was lower than at natural nests, and this could be due to a failure of some nest predators to locate cryptic nests in the absence of cues provided by parental activity. Our results supported the prediction that exposed and concealed nests have different levels of nest predation, which can be explained by variation in predator type. Visual predators were only detected at exposed nests, and survival from visual predators was lower for high nests that were also exposed. However, olfactory predators were detected irrespective of nest height or nest concealment. Because rodents use olfaction to locate nests, this could explain the lack of association between nest concealment and predation outcome at low nests. In addition, rodent footmarks near nests were significantly associated with rodent tooth marks on eggs.  相似文献   

19.
Predation is the leading cause of nest failure for most birds. Thus, for ornithologists interested in the causes and consequences of variation in nest success, knowing the identity and understanding the behavior of dominant nest predators is likely to be important. Video documentation of nests has shown that snakes are frequent predators. Here we reviewed 53 North American studies that used nest cameras and used these data to identify broad patterns in snake predation. Snakes accounted for 26% (range: 0–90%) of recorded predation events, with values exceeding 35% in a third of studies. Snakes were more frequent nest predators at lower latitudes and less frequent in forested habitat relative to other nest predators. Although 12 species of snakes have been identified as nest predators, ratsnakes Elaphe obsoleta, corn snakes E. guttata and fox snakes E. vulpina were the most frequent, accounting for > 70% of all recorded nest predation events by snakes and have been documented preying on nests in 30–65% of studies conducted within their geographic ranges. Endotherm‐specialist snakes (Elaphe and Pituophis genera) were more likely to depredate nests in forests and the canopy relative to other snakes, due to their affinity for edge habitat. Predation by only ratsnakes and corn snakes was predominantly nocturnal and only ratsnakes were more likely to prey on nests during the nestling stage. Snakes were not identified to species in over 30% of predation events, underlining the need for more complete reporting of results. A review of research to date suggests the best approach to investigating factors that bring snakes and nests into contact involves combining nesting studies with radio tracking of locally important snake nest predators.  相似文献   

20.
ABSTRACT Nest predation is a natural component of greater sage-grouse (Centrocercus urophasianus) reproduction, but changes in nesting habitat and predator communities may adversely affect grouse populations. We used a 2-part approach to investigate sage-grouse nest predation. First, we used information criteria to compare nest survival models that included indices of common raven (Corvus corax) abundance with other survival models that consisted of day of incubation, grouse age, and nest microhabitat covariates using measurements from 77 of 87 sage-grouse nests. Second, we used video monitoring at a subsample of 55 of 87 nests to identify predators of depredated nests (n = 16) and evaluated the influence of microhabitat factors on the probability of predation by each predator species. The most parsimonious model for nest survival consisted of an interaction between day of incubation and abundance of common ravens (wravenXincubation day = 0.67). An estimated increase in one raven per 10-km transect survey was associated with a 7.4% increase in the odds of nest failure. Nest survival was relatively lower in early stages of incubation, and this effect was strengthened with increased raven numbers. Using video monitoring, we found the probability of raven predation increased with reduced shrub canopy cover. Also, we found differences in shrub canopy cover and understory visual obstruction between nests depredated by ravens and nests depredated by American badgers (Taxidea taxus). Increased raven numbers have negative effects on sage-grouse nest survival, especially in areas with relatively low shrub canopy cover. We encourage wildlife managers to reduce interactions between ravens and nesting sage-grouse by managing raven populations and restoring and maintaining shrub canopy cover in sage-grouse nesting areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号