首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
长白山阔叶红松林树木N2O排放及总量初步估算   总被引:3,自引:0,他引:3  
大气中主要温室气体N2 O的部分来源尚不清楚。以往国内外对森林生态系统N2 O排放通量的测定中 ,只测土壤通量而把树木排除在外。如果树木在自然状态下能排放N2 O ,那么森林生态系统的N2 O排放可能被低估。本文旨在证明自然状态下森林生态系统中树木也是N2 O的主要排放源。采用封闭罩法 ,在树木生长的主要季节 (7~ 9月 )对长白山阔叶红松林的几个主要树种———水曲柳、红松和椴树的连体枝叶释放N2 O的速率进行了原位测定。并在此基础上 ,初步估算出森林树木N2 O年排放量是土壤N2 O年排放量的 0 8~ 1 0 3倍 ,相当于甚至超过了土壤的N2 O排放量。  相似文献   

2.
不同光强条件下树木释放N2O的研究   总被引:5,自引:0,他引:5  
张秀君  陈冠雄  徐慧 《应用生态学报》2002,13(12):1563-1565
首次采用封闭罩法,对阳生树木(水曲柳,红松和赤杨)及阴生树木(椴树)的连体及离体枝叶在不同光强下的N2O释放进行了野外原位观测。结果表明,阳生树木与阴性树木的N2O释放对光的反应不同,阳生树木的N2O释放受光强的调节规律同以往对农作物等的研究结果一致;而阴生树木椴树的N2O速率在强光下N2O释放较多,弱光下释放减少甚至吸收大气N2O,其N2O释放速率与光强呈显著线性正相关关系。  相似文献   

3.
测定10个树种树木上的三年生枝条树皮内绿色组织的叶绿素含量、光合速率和枝干的呼吸速率的结果表明:10个树种树皮内叶绿素含量为0.0649~0.3460mg·g^-1(FW),叶绿素a/b为1.05~1.91,均低于叶片或针叶;树皮内绿色组织的光合速率为0.21(红松)~2.06(水曲柳)μmol(O2)·m^-2·s^-1,枝干呼吸速率1.76(红松)~3.21(落叶松)μmol(O2)·min^-1·g^-1(FW)。树皮内绿色组织的光补偿点(LCP)、光饱和点(LSP)低于叶片,而表观量子效率(AQY)高于叶片或针叶。据此认为,树皮内绿色组织适应于阴生环境,所以有较强的耐阴能力。  相似文献   

4.
张金凤  李增嘉 《生态学杂志》2013,32(7):1703-1709
用室内培养法测定了不同水肥处理下的盐土N2O排放速率.未加氮肥时,从中盐土(ECe=6.4 mS·cm-1)到极盐土(ECe=126.5 mS·cm-1),在各水分条件下(50%WHC,80% WHC和4 cm深水面),盐土排放N2O的速率都非常低,经常在检测限以下.添加硝酸铵(0.4 mg N·g-1 soil)后,沙质中盐土排放速率在50% WHC时为41.0 μg N2O·kg-1soil·d-1,在4 cm深水面时为364.6 μg N2O·kg-1soil·d-1,与以往类似处理的非盐土相当.沙质重盐土和极盐土排放速率分别为中盐土的43%~65%和23% ~48%.相反,壤质盐土排放速率极低(0.91 ~37.1 μg N2O·kg-1 soil·d-1).盐土高的N2O生产潜力及对氮和质地的强烈依赖性表明盐影响N2O排放主要来源于碳、氮供给限制,而较少受微生物因素的直接影响.  相似文献   

5.
研究了持续 3个生长季高浓度CO2 处理的长白山主要树种红松、长白赤松和水曲柳幼苗叶 (片 )的蔗糖、果糖、可溶性总糖、淀粉及全氮含量变化 .结果表明 ,前两个生长季 70 0 μmol·mol-1CO2 处理 ,促进了水曲柳和长白赤松幼苗的淀粉累积 ,70 0和 5 0 0 μmol·mol-1CO2 却使红松幼苗的全N含量明显降低 .第三个生长季高浓度CO2 处理的第一周和第二周 ,红松和水曲柳幼苗的淀粉含量增加 ,全N含量降低 ,第八周时 ,水曲柳仍维持原来的变化趋势 .第三个生长季高浓度CO2 处理 ,并未使长白赤松的C、N含量有明显的增减 .CO2 浓度影响了碳水化合物在叶 (片 )中的积累形式  相似文献   

6.
用液体发酵的蜜环菌菌丝、菌丝细胞壁及发酵液作为激发子,分别处理猪苓菌丝,均可诱导猪苓菌丝活性氧的产生。活性氧产生量与激发子浓度具相关性。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、甘露醇均可在一定程度上抑制活性氧的产生,证明活性氧种类包括过氧化氢(H2O2)、羟基自由基(·OH)和超氧根阴离子(O·-2)。Diphenylene iodonium (DPI)能削弱激发子对活性氧的诱导,表明O·-2来源于NADPH氧化酶。  相似文献   

7.
黑龙江省帽儿山林区6种主要林分类型凋落物研究   总被引:7,自引:1,他引:6  
对帽儿山林区水曲柳、落叶松等六种主要林分的年凋落量、凋落物组成及分解动态进行了观测。结果表明:(1) 六种林分的年凋落量分别为水曲柳(5.57 t·hm-2)、蒙古栎(4. t·hm-2)、山杨(4.27 t·hm-2)、落叶松(4.08 t·hm-2)、红松(5.62 t·hm-2)、樟子松(5.56 t·hm-2);(2) 六种林分其叶的年凋落量占年总凋落量的比例明显大于其它组分,是其凋落物中的主要组成部分;(3) 经过近1a时间的分解,测得六种林分凋落叶分解速率依次为:水曲柳>樟子松>落叶松>山杨>蒙古栎>红松;经模拟研究表明,水曲柳凋落叶95%分解需3.5 a;蒙古栎需8.0 a;山杨需6.7 a;落叶松需6.6 a;红松需8.8 a;樟子松需4.4 a。  相似文献   

8.
在25℃、60%WHC(最大持水量)的好氧条件下进行14d的培养试验,研究杀菌剂百菌清在添加水平为0mg·kg^-1(CK)、5.5mg·kg^-1(田间施用量,FR)及110mg·kg^-1(20FR)和220mg·kg^-1(40FR)时对酸性、中性和碱性土壤中N2O和CO2排放的影响.结果表明:百菌清对N2O和CO2排放的影响取决于土壤类型和施用浓度.与对照相比,百菌清在20FR和40FR时显著抑制了酸性土壤N2O的产生与排放;3种施用量均显著促进了中性土壤N2O的排放,其中FR水平的促进效果最显著;高浓度(20FR和40FR)的百菌清在培养初期抑制了碱性土壤N2O的排放,而在培养后期显著促进了N2O的排放.田间用量的百菌清对土壤CO2排放量没有明显影响;高浓度(20FR和40FR)时显著促进了酸性土壤CO2的排放,显著抑制了中性和碱性土壤CO2的排放.  相似文献   

9.
以厌氧产氢细菌Clostridium sp. H-61为原始菌株, 先后经亚硝基胍(NTG)、紫外(UV)诱变, 选育得到1株高产突变株HCM-23。在葡萄糖浓度为10 g/L的条件下, 其产氢量为3024 mL/L, 比原始菌株提高了69.89%; 其最大产氢速率为33.19 mmol H2/g DW·h, 比原始菌株(19.74 mmol H2/g DW·h)提高了68.14%。经过多次传代试验, 稳定性良好。其发酵末端产物以乙醇和乙酸为主, 属于典型乙醇型发酵代谢类型。其最适产氢初始pH为6.5, 最适生长温度为36℃, 以蔗糖为最佳碳源。与原始菌株相比, 突变株HCM-23的产氢特性发生了改变, 如生长延滞期延长, 可利用无机氮源等。  相似文献   

10.
以我国东北地区4个纬度针叶树种红松和阔叶树种水曲柳为对象,研究两树种成熟叶碳(C)、氮(N)、磷(P)化学计量特征和养分重吸收率及其相关性,分析气候和土壤因子对叶化学计量特征及养分重吸收率的影响。结果表明:叶化学计量特征的地理变异存在种间差异,随着纬度的升高,水曲柳叶C、N含量显著增加;水曲柳C∶N、红松N∶P均与纬度呈显著负相关,而水曲柳N∶P与纬度呈显著正相关。红松磷重吸收率与纬度呈显著正相关。相关分析表明,红松和水曲柳叶的生态化学计量特征主要受到气候因子(年均温和降水量)的影响,而养分重吸收率仅受少数土壤因子(pH和全氮)的影响。主成分分析表明,红松和水曲柳磷重吸收率与N∶P均呈显著负相关,与P含量呈显著正相关;氮重吸收率仅在红松中与P含量呈显著正相关,与N∶P呈显著负相关。水曲柳相比红松更倾向于具有快速投资-收益型特征。  相似文献   

11.
Ecosystems - Subtropical and tropical forests account for over 50% of soil CO2 production, 47% of N2O fluxes of natural ecosystems, and act as both significant sources and sinks of atmospheric CH4....  相似文献   

12.
Nitrous oxide (N(2)O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and fungal denitrification and nitrification processes in soils, largely as a result of the application of nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting, 'Nitrous oxide (N(2)O) the forgotten greenhouse gas', held at the Kavli Royal Society International Centre, from 23 to 24 May 2011. It provides an introduction and background to the nature of the problem, and summarizes the conclusions reached regarding the biological sources and sinks of N(2)O in oceans, soils and wastewaters, and discusses the genetic regulation and molecular details of the enzymes responsible. Techniques for providing global and local N(2)O budgets are discussed. The findings of the meeting are drawn together in a review of strategies for mitigating N(2)O emissions, under three headings, namely: (i) managing soil chemistry and microbiology, (ii) engineering crop plants to fix nitrogen, and (iii) sustainable agricultural intensification.  相似文献   

13.
在广东鹤山大叶相思(Acacia auriculaeformis)人工林内设置外来蚯蚓西土寒宪蚓(Ocnerodrilus occidentalis)和乡土植物三叉苦(Evodia lepta)野外控制实验,用静态箱-气相色谱法对土壤N2O和CH4通量进行15 d的原位测定,研究蚯蚓和三叉苦对土壤N2O和CH4通量的影响。结果表明,三叉苦并未明显增加土壤N2O和CH4的通量,而假植物(模拟三叉苦的物理效应)则显著促进了土壤N2O的释放通量。整个实验阶段,蚯蚓效应分别使无植物对照和三叉苦处理土壤N2O通量增加了26.7%和66.3%,而在种假植物条件下,添加蚯蚓使土壤N2O通量降低了39.7%;同时,蚯蚓效应使对照处理土壤CH4吸收通量增加了10.3%,使假植物处理土壤CH4吸收通量降低了90.6%,而使三叉苦处理土壤CH4释放通量增加了301.8%。可见,蚯蚓能够促进人工林土壤N2O释放;同时促进人工林土壤从CH4“汇”向“源”转变。三叉苦的物理过程促进土壤N2O的释放,而三叉苦的生物过程抑制土壤N2O的排放。如何减缓人工林中土壤N2O和CH4的排放,必须综合考虑植物物理过程、生物过程以及蚯蚓对土壤N2O和CH4排放过程影响的独立效应和交互效应。  相似文献   

14.
Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N(2)O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N(2)O fluxes were spatially variable, ranging from 0.01 to -0.02 μmol of N(2)O m(-2) h(-1). Fertilization with nitrate stimulated in situ N(2)O emissions and N(2)O production in anoxic microcosms without apparent delay. N(2)O was subsequently consumed in microcosms. Maximal reaction velocities (v(max)) of nitrate-dependent denitrification approximated 3 and 1 nmol of N(2)O per h per gram (dry weight [g(DW)]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. v(max) values of nitrite-dependent denitrification were 2- to 5-fold higher than the v(max) nitrate-dependent denitrification, and v(max) of N(2)O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N(2)O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N(2)O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like palsa peats represent reservoirs of diverse acid-tolerant denitrifiers associated with N(2)O fluxes.  相似文献   

15.
This study investigates soil N2O dynamics in forest soils representing early (3-years) and late (>50 years) post-harvest succession in Atlantic Canada over a 9-month snow-free period in order to develop a better understanding of the role of managed forests as sources and sinks of N2O. We couple measurement of surface flux with detailed measurements of subsurface N2O concentrations at four mineral soil depths (0, 5, 20 and 35 cm) at 40 plots located within four sites. Median surface fluxes were similar at all sites regardless of the management stage (−5 to +19 ugN2O–N/m2/day), with all sites behaving as net sinks and sources of N2O over the measurement period. Subsurface mineral soil N2O concentrations at early (3-year) post-harvest succession sites, which ranged from median values of 362 ppbv at 0 cm to 1783 ppbv at 35 cm depth, were significantly higher than late post-harvest succession sites where median concentrations ranged from 329 ppbv at 0 cm to 460 ppbv at 35 cm depth. Examination of relationships between subsurface gas storage and surface flux magnitudes, suggested although recently harvested forest soils may be producing N2O at a greater rate than mature forest soils, observed patterns are consistent with a strong sink for this gas that prevents its conservative transport through the soil profile, and ultimate emission to the atmosphere through the majority of the measurement period.  相似文献   

16.
Forest harvesting alters the cycling of nitrogen (N) within temperate forest systems in a manner that may influence atmospheric nitrous oxide (N2O) concentrations. This paper investigates, over a single growing season within the Acadian Forest region of Atlantic Canada, soil N2O fluxes across a clearcut harvest red spruce forest chronosequence that includes an old growth reference site (>125 years). A pulse of soil N2O at ~1–2 years was observed after clearcut harvesting, followed by an exponential decay to a baseline level within one to two decades after the harvesting event. No significant differences between fluxes from the forest sites >20 years of age and the reference old growth site (>125 years) were observed. Soils within the chronosequence acted as both sources and sinks for N2O through the growing season. Low soil N availability was identified as the likely factor limiting soil N2O flux responses to changes in soil temperature and moisture in situ at most sites. This was confirmed by controlled laboratory experiments that measured soil N2O flux responses to moisture, temperature and N amendments. Without N amendments, soils act as an elevated sink for N2O under increased temperature. However, when soil N was not limiting, N2O flux responded primarily to moisture. Overall, the study suggests that moist temperate forest soils that are N-limited can act as a transient source of N2O following clearcut harvesting during the growing season, and that the decrease in the release of N2O from soils following harvesting follows an exponential pattern.  相似文献   

17.
Rising concentrations of nitrous oxide (N2O) in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N2O emissions requires a solid understanding of the relative importance of all N2O sources and sinks. Stable isotope ratio measurements (δ15N-N2O and δ18O-N2O), including the intramolecular distribution of 15N (site preference), are one way to track different sources if they are isotopically distinct. ‘Top-down’ isotope mass-balance studies have had limited success balancing the global N2O budget thus far because the isotopic signatures of soil, freshwater, and marine sources are poorly constrained and a comprehensive analysis of global N2O stable isotope measurements has not been done. Here we used a robust analysis of all available in situ measurements to define key global N2O sources. We showed that the marine source is isotopically distinct from soil and freshwater N2O (the continental source). Further, the global average source (sum of all natural and anthropogenic sources) is largely controlled by soils and freshwaters. These findings substantiate past modelling studies that relied on several assumptions about the global N2O cycle. Finally, a two-box-model and a Bayesian isotope mixing model revealed marine and continental N2O sources have relative contributions of 24–26% and 74–76% to the total, respectively. Further, the Bayesian modeling exercise indicated the N2O flux from freshwaters may be much larger than currently thought.  相似文献   

18.
The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO(2)) and water vapour (H(2)O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO(2) and H(2)O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO(2) and H(2)O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO(2) than H(2)O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO(2) and H(2)O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO(2) and H(2)O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO(2), H(2)O and COS exchange and the corresponding component fluxes, are urgently needed.  相似文献   

19.
植被生态系统对植被碳汇至关重要,是实现中国“碳中和”目标的重要路径之一。选择1981—2019年全球逐日NEP模拟数据产品,对1981—2019年中国植被碳源/汇时空演变进行分析,确定气候变化和人类活动对植被碳源/汇的影响区域,并量化生态修复治理工程对植被碳汇的成效。(1)通过使用BFAST模型监测NEP年际突变范围,确定2001年为时间断点,对比分析1981—2001年与2001—2019年NEP时空变化特征及驱动因素。(2)1981—2001年段植被碳汇大范围呈现递减趋势。2001—2019年,中国整体植被碳汇增加,尤其是北部地区NEP增长趋势显著。(3)1981—2001年中国北部地区植被固碳能力下降,受降水、辐射影响为主。2001—2019年,大部分地区NEP变化与降水相关性显著。(4)1981—2001年人类活动导致植被碳源/汇变化占总面积的4%,主要分布于东北地区和西南地区。2001—2019年中国植被碳源/汇变化由人类活动影响占比提高至26.23%,其中植被固碳能力提升占比25.22%。气候变化负向影响植被固碳能力较于1981—2001年减少约30%。说明人类活动在一定程...  相似文献   

20.
A study was designed to (a) identify sources and sinks of N in the maize (Zea mays L.) shoot, by estimating net N fluxes for each of seven parts of the shoot, (b) determine effects of N entering the plant upon fluxes of N absorbed before reproductive growth, and (c) determine the effects of the opaque-2 gene on N fluxes in the maize shoot during early reproductive growth. Plants of a maize hybrid (Pioneer 3369A) and its opaque-2 counterpart (Pioneer L3369) were grown in a greenhouse using nutrient solution/sand culture, with NO3 as the N source during the vegetative growth phase. Beginning at the time of pollination, the same nutrient regime was continued, except that some plants received no N, and others received 3.75 millimolar 15N as NO3-N.

Stalk and leaves were found to be primary N sources for the grain, while shank, husk, and cob acted first as N sinks, then as N sources during reproductive growth. Net fluxes of N for each plant part were estimated by calculating the first derivatives of regression equations used to fit data for N contents of each plant part as functions of time. All parts of the shoot were sinks for exogenous N (absorbed after pollination). Thirty-six days after pollination, the grain contained 60% endogenous N (absorbed before pollination) when 3.75 millimolar NO3-N was supplied after pollination. Rates of total N influx to the grain were identical whether or not N was supplied in the nutrient solution during reproductive growth. At 36 days after pollination, less N had accumulated in the grain of the opaque-2 genotype, but otherwise there were no differences in N contents or dry weights of the shoots due to the opaque-2 gene. Absence of N from the rooting medium significantly affected N fluxes throughout the shoot during reproductive growth, but there were no detectable effects of the opaque-2 gene on N fluxes in parts of the plant other than the grain.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号