首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequences of the small-subunit (SSU) ribosomal DNA were determined forPelvetia babingtonii, P. canaliculate, Pelvetiopsis limitata, andAscophyllum nodosum in the family Fucaceae. A total of 1755 positions were aligned for the whole sequence. The positional differences in the primary structure among the taxa ranged from 16 to 30 nucleotide changes in pairwise comparisons. There was a minimum divergence betweenPs. limitata andP. babingtonii while a maximum betweenPs. limitata andP. canaliculata. The SSU rDNA trees showed that the genusPelvetia was not monophyletic and the genusPelvetiopsis was not closely related toPelvetia. Our results suggest that the taxonomic revision of the genusPelvetia as well as the family Fucaceae is needed based on detailed morphological observations.  相似文献   

2.
Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.  相似文献   

3.
Mitochondrial small subunit ribosomal DNAs of Cerrena unicolor and Trametes consors were sequenced and compared with those of known mushroom taxa. Trametes consors is a species recently transferred from Irpex, and Cerrena is a genus closely related to Trametes. The present phylogenetic tree showed that Cerrena unicolor and Trametes consors clustered together and made an independent lineage from the Trametes group. A new combination, Cerrena consors (Berk.) Ko and Jung, comb. nov., is proposed here by transferring Trametes consors into Cerrena based on molecular data along with taxonomic evidence.  相似文献   

4.
Molecular data have proved useful as an alternative to morphological data in showing the relationships of genera within the phylum Microsporidia, but until now have been available only for ribosomal genes. In previous studies protein-coding genes of microsporidia have been used only to assess their position in the evolution of eukaryotes. For the first time we report on the use of a protein-coding gene, the A-G region of the largest subunit of RNA polymerase II (RPB1) from 14 mainly polysporous species, to generate an alternative phylogeny for microsporidia. Using the amino acid sequences, the genera and species fell into the same main groupings as had been obtained with 16S rDNA sequences, but the RPB1 data provided better resolution within these groups. The results supported the pairings of Trachipleistophora hominis with Vavraia culicis and Pleistophora hippoglossoideos with Pleistophora typicalis. They also confirmed that the genus Pleistophora is not monophyletic and that it will be necessary to transfer Pleistophora ovariae and Pleistophora mirandellae into one or more other genera, as has already been effected for Pleistophora anguillarum.  相似文献   

5.
Analysis of the nucleotide sequence of the mitochondrial 12S ribosomal RNA gene of 27 species or sub-species of bitterlings showed that bitterlings comprise an Acheilognathus clade and a Tanakia-Rhodeus clade, partially supporting an earlier classification based on morphology and karyology. The monophyly of Acheilognathus is confirmed, but that of Tanakia and Rhodeus remains poorly resolved. Within the Tanakia–Rhodeus clade, all species or sub-species having a diploid chromosome number of 46 form a monophyletic group. Results support the hypothesis that evolutionary trends of bitterling karyotypes involve reduction from 2 n =48 to either 2 n =44 (by Robertsonian translocation) or 2 n =46 (by non-Robertsonian translocation).  相似文献   

6.
In order to investigate phylogenetic relationships of the Peronosporomycetes (Oomycetes), nuclear large subunit ribosomal DNA sequences containing the D1 and D2 region were analyzed of 92 species belonging to the orders Peronosporales, Pythiales, Leptomitales, Rhipidiales, Saprolegniales and Sclerosporales. The data were analyzed applying methods of neighbor-joining as well as maximum parsimony, both statistically supported using the bootstrap method. The results confirm the major division between the Pythiales and Peronosporales on the one hand and the Saprolegniales, Leptomitales, and Rhipidiales on the other. The Sclerosporales were shown to be polyphyletic; while Sclerosporaceae are nested within the Peronosporaceae, the Verrucalvaceae are merged within the Saprolegniales. Within the Peronosporomycetidae, Pythiales as well as Peronosporales as currently defined are polyphyletic. The well supported Albugo clade appears to be the most basal lineage, followed by a Pythium-Lagenidium clade. The third, highly supported clade comprises the Peronosporaceae together with Sclerospora, Phytophthora, and Peronophythora. Peronophythora is placed within Phytophthora, indicating that both genera should be merged. Bremiella seems to be polyphyletic within the genus Plasmopara, suggesting a transfer to Plasmopara. The species of Peronospora do not appear as a monophyletic group. Peronospora species growing on Brassicaceae form a highly supported clade.  相似文献   

7.
The sequences of ITS regions in 30 species and two groups of the genusPythium were resolved. In the phylogenetic trees, the species were generally divided into two clusters, referred to here as the F and S groups. The species in the two groups correspond in terms of their sporangial morphology, with the F group being filamentous/lobulate and the S group being spherical. Genetic divergence within the F group was lower than that within the S group. Other morphological characteristics such as oogonial structure and sexual nature appeared to be unrelated to the groupings in these trees. An alignment analysis revealed common sequences to all the species and arrangements specific to each F or S group. It was found that the ITS region was a good target in designing species-specific primers for the identification and detection ofPythium species. In the tree based on 5.8S rDNA sequences, oomycetes are distantly related to other fungi but separated from algae in Chromista.  相似文献   

8.
Phylogenetic analysis of 155 nuclear rDNA ITS sequences among them 19 Iranian endemic genera were used to elucidate phylogenetic relationships of Old World Brassicaceae from Iran in the context of the most recent tribal system suggested by Al-Shehbaz et al. [Al-Shehbaz, I.A., Beilstein, M.A, Kellogg, E.A., 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 259, 89–120]. Iranian endemic taxa are assigned to 16 clades, 15 of these correspond to recognized tribes. Our data support the recent tribal recognition of Calepina and relatives and further indicate that the Orychophragmus clade (with Conringia planisiliqua and Orychophragmus) may be recognized as a new tribe. Our data also support the inclusion of 13 genera not previously studied, or with unresolved positions in previous phylogenetic analyses in 10 tribes with the tribal assignment given in parentheses: Acanthocardamum (Aethionemeae), Alyssopsis (Camelineae), Anastatica (Malcolmieae), Asperuginoides (Cochlearieae), Camelinopsis (Thlaspideae), Didymophysa (Thlaspideae), Dielsiocharisi (Camelineae), Lachnoloma (Anchonieae), Micrantha (Anchonieae), Noccidium (Camelineae), Octoceras (Euclidieae), Pseudofortuynia (Sisymbrieae) and Streptoloma (Euclidieae). ITS data and morphological characters further indicate that the remaining five genera, i.e., Acanthocardamum, Olimarabidopsis, Brossardia, Noccidium and Zuvanda may be subsumed under Aethionema, Alyssopsis, Noccaea, Capsella and Conringia, respectively. Alyssum, Chorispora, Fibigia and Goldbachia are paraphyletic and Conringia, Malcolmia, Matthiola are polyphyletic taxa.  相似文献   

9.
Figs (Ficus, Moraceae) are either monoecious or gynodioecious depending on the arrangement of unisexual florets within the specialized inflorescence or syconium. The gynodioecious species are functionally dioecious due to the impact of pollinating fig wasps (Hymenoptera: Agaonidae) on the maturation of fig seeds. The evolutionary relationships of functionally dioecious figs (Ficus subg. Ficus) were examined through phylogenetic analyses based on the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and morphology. Forty-six species representing each monoecious subgenus and each section of functionally dioecious subg. Ficus were included in parsimony analyses based on 180 molecular characters and 61 morphological characters that were potentially informative. Separate and combined analyses of molecular and morphological data sets suggested that functionally dioecious figs are not monophyletic and that monoecious subg. Sycomorus is derived within a dioecious clade. The combined analysis indicated one or two origins of functional dioecy in the genus and at least two reversals to monoecy within a functionally dioecious lineage. The exclusion of breeding system and related characters from the analysis also indicated two shifts from monoecy to functional dioecy and two reversals. The associations of pollinating fig wasps were congruent with host fig phylogeny and further supported a revised classification of Ficus.  相似文献   

10.
Phylogenetic relationships within the Acanthocephala have remained unresolved. Past systematic efforts have focused on creating classifications with little consideration of phylogenetic methods. The Acanthocephala are currently divided into three major taxonomic groups: Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. These groups are characterized by structural features in addition to the taxonomy and habitat of hosts parasitized. In this study the phylogenetic relationships of 11 acanthocephalan species are examined with 18S rDNA sequences. Maximum parsimony, minimum evolution, and maximum likelihood methods are used to estimate phylogenetic relationships. Within the context of sampled taxa, all phylogenetic analyses are consistent with monophyly of the major taxonomic groups of the Acanthocephala, suggesting that the current higher order classification is natural. The molecular phylogeny is used to examine patterns of character evolution for various structural and ecological characteristics of the Acanthocephala. Arthropod intermediate host distributions, when mapped on the phylogeny, are consistent with monophyletic groups of acanthocephalans. Vertebrate definitive host distributions among the Acanthocephala display independent radiations into similar hosts. Levels of uncorrected sequence divergence among acanthocephalans are high; however, relative-rate tests indicate significant departure from rate uniformity among acanthocephalans, arthropods, and vertebrates. This precludes comparison of 18S divergence levels to assess the relative age of the Acanthocephala. However, other evidence suggests an ancient origin of the acanthocephalan-arthropod parasitic association.  相似文献   

11.
The phylogenetic relationships of Chalara and allied taxa are studied based on ribosomal DAN sequences. Partial 28S rDNA and 18S rDNA regions from 26 strains were sequenced in this study. These and related sequences from GenBank were analyzed using parsimony and Bayesian analyses. Most of the Chalara species clustered in a strongly supported monophyletic lineage representing Helotiales. However, a few Chalara species appeared closely related to Xylariales. The phylogenetic significance of morphological characters observed in Chalara species are evaluated based on our sequence analyses. Conidial septation, conidial width and conidiophore pigmentation are thought to be indicative in understanding their evolutionary relationships. Sterile setae, which traditionally have been used to delimitate Chaetochalara from Chalara, are phylogenetically insignificant.  相似文献   

12.
Helicosporous fungi form elegant, coiled, and multicellular mitotic spores (conidia). In this paper, we investigate the phylogenetic relationships among helicosporous fungi in the asexual genera Helicoma, Helicomyces, Helicosporium, Helicodendron, Helicoon, and in the sexual genus Tubeufia (Tubeufiaceae, Dothideomycetes, and Ascomycota). We generated ribosomal small subunit and partial large subunit sequences from 39 fungal cultures. These and related sequences from GenBank were analyzed using parsimony, likelihood, and Bayesian analysis. Results showed that helicosporous species arose convergently from six lineages of fungi in the Ascomycota. The Tubeufiaceae s. str. formed a strongly supported monophyletic lineage comprising most species from Helicoma, Helicomyces, and Helicosporium. However, within the Tubeufiaceae, none of the asexual genera were monophyletic. Traditional generic characters, such as whether conidiophores were conspicuous or reduced, the thickness of the conidial filament, and whether or not conidia were hygroscopic, were more useful for species delimitation than for predicting higher level relationships. In spite of their distinctive, barrel-shaped spores, Helicoon species were polyphyletic and had evolved in different ascomycete orders. Helicodendron appeared to be polyphyletic although most representatives occurred within Leotiomycetes. We speculate that some of the convergent spore forms may represent adaptation to dispersal in aquatic environments.  相似文献   

13.
We used a 694 bp length of the mitochondrial ND4 gene from 40 genera to infer phylogenetic relationships among colubroid snakes. The goals of this study were to identify conserved subsets of ND4 sequence data that could be used to address (1) which nominal higher-level colubroid taxa are monophyletic, and (2) the relationships among the monophyletic lineages identified. Use of transversions only proved the most reliable and efficient means of retrieving colubroid relationships. Transversion parsimony and neighbour-joining analyses identify similar monophyletic higher-level taxa, but relationships among these lineages differ considerably between the two analyses. These differences were affected by the inclusion/exclusion of (1) transitions, (2) autapomorphies, and (3) the boid outgroups. Saturation effects among the transitions, uninformativeness of autapomorphies for clustering taxa, and long-branch and base-compositional problems among the boids lead us to regard the tree resulting from transversion parsimony analysis rooted with Acrochordus as the best current estimate of colubroid phylogenetic relationships. However, several aspects of this proposed phylogeny need further testing (e.g. the apparent diphyly of Natricinae is especially controversial). Relationships retrieved using all colubroid taxa are not obtained when sparsely or unevenly sampled experimental subsets of taxa are used instead, suggesting that long-branch problems can severely compromise elucidation of colubroid relationships if limited taxonomic sampling strategies are followed. We discuss the importance of this finding for previous molecular attempts to assess colubroid relationships. Our analyses confirm the historical validity of several nominal colubroid families and subfamilies, establish polyphyly of a few, but generally fail to resolve relationships among the monophyletic taxa we identify. More conservative character information will be required to confidently resolve the last issue.  相似文献   

14.
Diplocystis wrightii is an enigmatic gasteroid basidiomycete from the Caribbean. It has taxonomic affiliations with Lycoperdaceae, Broomeiaceae, and Sclerodermataceae. This study sampled ITS and 28S ribosomal genes from three D. wrightii specimens to determine the phylogenetic placement and the closest relatives of this species. Results of database searches and phylogenetic analysis indicate this species to be a member of the Sclerodermatineae and most closely related to the genera Astraeus and Tremellogaster.  相似文献   

15.
The phylogenetic positioning of the non-pathogenic genusSpiromastix in the Onygenales was studied based on large subunit rDNA (LSU rDNA) partial sequences (ca. 570 bp.). FourSpiromastix species and 28 representative taxa of the Onygenales were newly sequenced. Phylogenetic trees were constructed by the neighbor-joining (NJ) method and evaluated by the maximum parsimony (MP) method with the data of 13 taxa retrieved from DNA databases.Spiromastix and dimorphic systemic pathogens,Ajellomyces andParacoccidioides, appear to be a monophyletic group with 74% bootstrap probability (BP) in the NJ tree constructed with the representative taxa of the Onygenales. The tree topology was concordant with the NJ tree based on SSU rDNA sequences of our previous work and corresponded to the classification system of the Onygenales by Currah (1985) and its minor modification by Udagawa (1997) with the exception of the classification of the Onygenaceae. The Onygeneceae sensu Udagawa may still be polyphyletic, since three independent lineages were recognized. The taxa forming helicoid peridial appendages were localized to two clades on the tree. The topology of the NJ tree constructed withSpiromastix and its close relatives suggested that the helicoid peridial appendages were apomorphic and acquired independently in the two clades of the Onygenales.  相似文献   

16.
Phylogenetic analysis of nucleotide data from small subunit ribosomal DNA (SSU rDNA) sequences (ca. 1685 bp.) was performed on 19 taxa of the Onygenales and three related mitosporic fungi. Phylogenetic trees were constructed by the neighbor-joining method with the sequence data of related taxa obtained from DNA databases. The species in the Onygenales form two clusters and seven subclusters, and the tree topology reflects the traditional classification by Currah (1985) with some exceptions. The Myxotrichaceae is placed in the different lineage, separate from other plectomycetous taxa and among the Leotiales and the Erysiphales. Furthermore, two separate lineages in the Myxotrichaceae were found. Tree topology suggested the Onygenaceae is polyphyletic and composed of three subgroups; 1) most members of Onygenaceae, 2)Spiromastix warcupii, and 3) pathogenic dimorphic fungi classified inAjellomyces.  相似文献   

17.
18.
小鲵科线粒体16S rRNA基因序列分析及其系统发育   总被引:9,自引:0,他引:9  
李悦  吴敏  王秀玲 《动物学报》2004,50(3):464-469
To study the phylogeny of Hynobiidae, we amplified DNA fragments of 470 bp 16S ribosomal RNA (16S rRNA) gene on mitochondrial DNA from Ranodon sibiricus and Ranodon tsinpaensis. PCR products were cloned into PMD18 T vector after purification. These sequences were determined and deposited in the GenBank (accession numbers: AY373459 for Ranodon sibiricus, AY372534 for Ranodon tsinpaensis). By comparing the nucleotide differences of 16S ribosomal RNA sequences among Liua shihi, Pseudohynobius flavomaculatus and Batrachuperus genus from GenBank database, we analyzed the divergences and base substitution among these sequences with the MEGA software. The molecular results support that B. tibetanus, B. pinchonii and B. karlschmidti are classified into three valid species. Liua shihi has closer phylogenetic relationships to Ranodon tsinpaensis than to other species. More our results reveal that Pseudohynobius flavomaculatus is not a synonym of Ranodon tsinpaensis. [Acta Zoologica Sinica 50 (3) : 464 - 469,2004].  相似文献   

19.
Burki F  Berney C  Pawlowski J 《Protist》2002,153(3):251-260
Gromia oviformis Dujardin is a common marine protist characterised by a large, globular test and filose pseudopodia. First considered a foraminifer, Gromia was later placed within the Filosea and recently included among amoebae of uncertain affinities. In order to clarify the phylogenetic position of this genus, we sequenced the complete small-subunit ribosomal DNA gene of G. oviformis collected at five different geographic localities. The high divergence of obtained sequences suggests that G. oviformis is a species complex composed of several genetically distinct sibling species. Sequence analyses show Gromia to be a member of the Cercozoa, a heterogeneous assemblage which includes filose amoebae, the amoeboflagellate cercomonads, the chlorarachniophytes and the plasmodiophorid plant pathogens. Contrary to traditional classification, Gromia is not closely related to other testate filose amoebae (the Euglyphida), but seems to branch early among the Cercozoa. Our analyses also show a close relationship between the Cercozoa and the Acantharea. Because the Cercozoa are related to the Foraminifera based on other molecular data, we propose that most protists possessing filopodia, reticulopodia and axopodia have a common origin.  相似文献   

20.
The aim of this work was to clarify taxonomy and examine evolutionary relationships within European Ceriporiopsis species using a combined analysis of the large subunit (nLSU) nuclear rRNA and small subunit (mtSSU) mitochondrial rRNA gene sequences. Data from the ITS region were applied to enhance the view of the phylogenetic relationships among different species. The studied samples grouped into four complex clades, suggesting that the genus Ceriporiopsis is polyphyletic. The generic type Ceriporiopsis gilvescens formed a separate group together with Ceriporiopsis guidella and Phlebia spp. in the phlebioid clade. In this clade, the closely related species Ceriporiopsis resinascens and Ceriporiopsis pseudogilvescens grouped together with Ceriporiopsis aneirina. C. resinascens and C. pseudogilvescens have identical LSU and SSU sequences but differ in ITS. Ceriporiopsis pannocincta also fell in the phlebioid clade, but showed closer proximity to Gloeoporus dichrous than to C. gilvescens or C. aneirinaC. pseudogilvescensC. resinascens group. Another clade was composed of a Ceriporiopsis balaenaeCeriporiopsis consobrina group and was found to be closely related to Antrodiella and Frantisekia, with the overall clade highly reminiscent of the residual polyporoid clade. The monotypic genus Pouzaroporia, erected in the past for Ceriporiopsis subrufa due to its remarkable morphological differences, also fell within the residual polyporoid clade. Ceriporiopsis subvermispora held an isolated position from the other species of the genus. Therefore, the previously proposed name Gelatoporia subvermispora has been adopted for this species. Physisporinus rivulosus appeared unrelated to two other European Physisporinus species. Moreover, Ceriporiopsis (=Skeletocutis) jelicii grouped in a separate clade, distinct from Ceriporiopsis species. Finally, the ITS data demonstrated the proximity of some Ceriporiopsis species (Ceriporiopsis portcrosensis and Ceriporiopsis subsphaerospora) to Skeletocutis amorpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号