首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.  相似文献   

2.
The influence of a C----G transversion at position 1 of the 30-base pair replication origin of bacteriophage phi X174 replicative form I DNA (phi X RFI) was examined in the RF----single-stranded circular DNA replication pathway catalyzed by the combined action of the purified phi X A protein, the Escherichia coli DNA polymerase III holoenzyme, rep helicase, and single-stranded DNA binding protein (Eisenberg, S., Scott, J.F., and Kornberg, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1594-1597; Reinberg, D., Zipursky, S.L., and Hurwitz, J. (1981) J. Biol. Chem. 256, 13143-13151). RFI DNA containing this transversion was cleaved to RFII by the phi X A protein as effectively as DNA containing the wild-type origin. The altered duplex DNA, however, supported replication at a slower rate (3- to 4-fold) than the wild-type DNA due to a defect in the termination and reinitiation reactions catalyzed by the phi X A protein. This defect resulted in the accumulation of DNA products containing long single strands covalently joined to the mutant DNA. These single strands were susceptible to nuclease S1 and exonuclease VII attack. The defect in the template DNA containing C----G transversion was not corrected when this mutant origin was placed on the same strand with a wild-type origin. This double-origin DNA was also replicated poorly and led to the accumulation of large products, in contrast to the products formed with RFI DNA containing two wild-type 30-base pair replication origins on the same strand.  相似文献   

3.
The origin of replication of the isometric single-stranded DNA bacteriophages is located in a specific sequence of 30 nucleotides, the origin region, which is highly conserved in these phage genomes. Plasmids harboring this origin region are subject to rolling-circle DNA replication and packaging of single-stranded (ss) plasmid DNA into phage coats in phi X174 or G4-phage-infected cells. This system was used to study the nucleotide sequence requirements for rolling-circle DNA replication and DNA packaging employing plasmids which contain the first 24, 25, 26, 27, 28 and the complete 30-base-pair (bp) origin region of phi X174. No difference in plasmid ss DNA packaging was observed for plasmids carrying only the 30-bp origin region and plasmids carrying the 30-bp origin region plus surrounding sequences (i.e. plasmids carrying the HaeIII restriction fragment Z6B of phi X174 replicative-form DNA). This indicates that all signals for DNA replication and phage morphogenesis are contained in the 30-bp origin region and that no contribution is made by sequences which immediately surround the origin region in the phi X174 genome. The efficiency of packaging of plasmid ssDNA for plasmids containing deletions in the right part of the origin region decreases drastically when compared with the plasmid containing the complete 30-bp origin region (for a plasmid carrying the first 28 bp of the origin region to approximately 5% and 0.5% in the phi X174 and G4 systems respectively). Previous studies [Fluit, A.C., Baas, P.D., van Boom, J.H., Veeneman, G.H. and Jansz, H.S. (1984) Nucleic Acids Res. 12, 6443--6454] have shown that the presence of the first 27 bp of the origin region is necessary as well as sufficient for cleavage of the viral strand in the origin region by phi X174 gene A protein. Moreover, Brown et al. [Brown, D.R., Schmidt-Glenewinkel, T., Reinberg, D. and Hurwitz, J. (1983) J. Biol. Chem. 258, 8402--8412] have shown that omission of the last 2 bp of the origin region does not interfere with phi X174 rolling-circle DNA replication in vitro. Our results therefore suggest that for optimal phage development in vivo, signals in the origin region are utilized which have not yet been noticed by the in vitro systems for phi X174 phage DNA replication and morphogenesis.  相似文献   

4.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

5.
Supercoiled plasmid bearing two wild-type phi X origin sequences on the same strand supported the phi X A protein-dependent in vitro formation of two smaller single-stranded circles, the lengths of which were equivalent to the distance between the two origins. Additional double origin plasmids were utilized to determine whether origins defective in the initial nicking event (initiation) could support circularization (termination). In all cases tested, the presence of a mutant origin on the same strand with a wild-type origin affected the level of replication in a manner consistent with the previously determined activity of the mutant origin. When a functional mutant origin was present on the same strand as a wild-type origin, the efficiency of replication and the DNA products formed were almost identical to those of the plasmid containing two wild-type origins. Plasmid DNA bearing both a wild-type origin and a mutant origin that did not support phi X A protein binding or nicking activity, on the other hand, supported efficient DNA synthesis of only full-length circular products, indicating that the origin defective for initiation was incapable of supporting termination. In contrast, the presence of a wild-type origin and an origin that did bind the phi X A protein but was not cleaved resulted in a marked decrease in DNA synthesis along with the production of only full-length products. This suggests that the phi X A protein stalls when it encounters a sequence to which it can bind but cannot cleave. Replication of double origin plasmids containing one functional phi X origin on each strand of the supercoiled DNA was also examined. With such templates, synthesis from the wild-type origin predominated, indicating preferential cleavage of the intact origin sequence. Replication of such substrates also produced a number of aberrant structures, the properties of which suggested that interstrand exchange of the phi X A protein had occurred.  相似文献   

6.
Mutational analysis of the bacteriophage phi X174 replication origin   总被引:2,自引:0,他引:2  
Bacteriophage phi X174 mutants within the 30 base-pair replication origin were constructed using oligodeoxynucleotide-directed mutagenesis. A total of 18 viable base substitution mutants at 13 different positions within the origin region were obtained. The majority of these ori mutants have a plaque morphology and burst size comparable to that of wild-type phi X174. Two phi X174 ori mutants with a reduced growth ability spontaneously acquired additional mutations that enhanced the growth rate. The additional mutation was located at the same site as the original mutation or was located in the N-terminal part of the gene A protein. This latter secondary mutation is responsible for a better binding and/or recognition of the gene A protein to the mutated origin. In a Darwinian experiment wild-type phi X174 outgrows all phi X174 ori mutants, indicating the superiority of the wild-type ori sequence for the reproduction of bacteriophage phi 174. Insertions and deletions were constructed at different positions within the phi X174 replication origin cloned in a plasmid. Small insertions and deletions in the A + T-rich spacer region do not inhibit phi X174 gene A protein cleavage in vitro, but severely impair packaging of single-stranded plasmid DNA in viral coats.  相似文献   

7.
Genes and regulatory sequences of bacteriophage phi X174   总被引:3,自引:0,他引:3  
Fragments of the DNA of bacteriophage phi X174 were inserted in the plasmids pACYC177 and pBR322, in order to test the in vivo effects of separate phage genes and regulatory sequences. The phi X174 inserts were identified by recombination and complementation with phage mutants, followed by restriction enzyme analysis. The genes B, C, F and G can be maintained stably in the cell even when there is efficient expression of these viral genes. Recombinant plasmids with the complete genes D and E can only be maintained when the expression of these genes is completely blocked. Expression of complete H and J genes could not yet be demonstrated. The intact gene A was apparently lethal for the host cell, as it was never found in the recombinants. The genes F and G are expressed, even when they are not preceded by one of the well characterized viral or plasmid promoter sequences. Screening of the nucleotide sequence of phi X174 gives two promoter-like sequences just in front of the two genes. Viral sequences with replication signals (the phi X174 (+) origin of replication, the initiation site for complementary strand synthesis and the incompatibility sequence) appeared to be functional also when inserted in recombinant plasmids. A plasmid with the phi X (+) origin can be forced to a rolling circle mode of replication. The A protein produced by infecting phages works in trans on the cloned viral origin. The (-) origin can function as initiation signal for complementary strand synthesis during transduction of single-stranded plasmid DNA. The intracellular presence of the incompatibility sequence on a plasmid prevents propagation of infecting phages.  相似文献   

8.
Synthetic oligonucleotides, DNA ligase and DNA polymerase were used to construct double-stranded DNA fragments homologous to the first 25, 27 or 30 b.p. of the origin of replication of bacteriophage phi X174 (nucleotides 4299-4328 of the phi X174 DNA sequence). The double-stranded DNA fragments were cloned into the unique SmaI or HindIII restriction sites in the kanamycin-resistance gene of pACYC177 (AmpR, KmR). Recombinant plasmids were picked up by colony hybridization. DNA sequencing showed that not only recombinant plasmids with the expected insert were formed, but also recombinant plasmids with a shorter insert. Recombinant plasmids with an insert homologous to the first 24, 25, 26, 27, 28 or all 30 b.p. of the phi X174 origin region were thus obtained. Supercoiled plasmids containing a sequence homologous to the first 27, 28 or 30 b.p. of the phi X174 origin region are nicked by the phi X174 gene A protein. However, the other supercoiled plasmids are not nicked by the phi X174 gene A protein. These results show that the first 27 b.p. of the phi X174 origin region are sufficient as well as required for the initiation step in phi X174 RF DNA replication, i.e. the cleavage by gene A protein.  相似文献   

9.
Effects of the size of template DNA on the DNA packaging reaction of bacteriophage phi X174 were studied using plasmids of various sizes which contain the phi X174 origin of DNA replication and the in vitro phage synthesizing system (Aoyama, A., Hamatake, R. K., and Hayashi, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4195-4199). DNA between 78.5% and 101% of the length of phi X174 DNA produced infectious particles efficiently. Packaging of DNA smaller or larger than this range produced uninfectious defective particles. Although these particles contained circular single-stranded DNA, they suffered structural changes which altered the sedimentation properties or the ability to adsorb to the cells. Mutant phage were found from the packaging reaction of DNA larger than 101% of phi X174 DNA. These mutants deleted the termination region of DNA, suggesting that they were produced by early termination of the phage synthesizing reaction.  相似文献   

10.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

11.
The nuclease specificity of the bacteriophage phi X174 A* protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
The A* protein of bacteriophage phi X174 is a single-stranded DNA specific nuclease. It can cleave phi X viral ss DNA in many different places. The position of these sites have been determined within the known phi X174 nucleotide sequence (1). From the sequences at these sites it is clear that the A* protein recognizes and cleaves at sites that show only partial homology with the origin of RF DNA replication in the phi X DNA. Different parts of the origin sequence can be deduced that function as a signal for recognition and cleavage by the A* protein. We conclude that different parts within the DNA recognition domain of the A* protein are functional in the recognition of the origin sequence in single-stranded DNA. The existence of different DNA recognition domains in the A* protein, and therefore also in the A protein, leads to a model that can explain how the A protein performs its multiple function in the phi X174 DNA replication process (2).  相似文献   

12.
The phi X174 (phi X) gene A protein-mediated termination and reinitiation of single-stranded circular (SS(c] phi X viral DNA synthesis in vitro were directly and independently analyzed. Following incubation together with purified DNA replication enzymes from Escherichia coli, ATP, [alpha-32P]dNTPs, and either the phi X A protein and phi X replicative form I (RF I) DNA, or the purified RF II X A complex, the phi X A protein was detected covalently linked to newly synthesized 32P-labeled DNA. Formation of the phi X A protein-[32P]DNA covalent complex required all the factors necessary for phi X (+) SS(c) DNA synthesis in vitro. Thus, it was a product of the reinitiation reaction and an intermediate of the replication cycle. Identification of this complex provided direct evidence that reinitiation of phi X (+) strand DNA synthesis involved regeneration of the RF II X A complex. Substitution of 2',3'-dideoxyguanosine triphosphate (ddGTP) for dGTP in reaction mixtures resulted in the formation of covalent phi X A protein 32P-oligonucleotide complexes; these complexes were trapped analogues of the regenerated RF II X A complex. They could not act catalytically due to the presence of ddGMP residues at the 3'-termini of the oligonucleotide moieties. Reaction mixtures containing ddGTP also yielded nonradioactive (+) SS(c) DNA products derived from circularization of the displaced (+) strand of the input parental template DNA. The formation of the phi X A protein-32P-oligonucleotide complexes and nonradioactive (+) SS(c) DNA were used to assay both reinitiation and termination reactions, respectively. Both reactions required DNA synthesis from the 3'-hydroxyl primer at nucleotide residue 4305 which was formed by cleavage of phi X RF I DNA by the phi X A protein. Elongation of this primer by 18, but not 11 nucleotides was sufficient to support each reaction. Reinitiation reactions proceeded rapidly and were essentially complete after 90 s. In contrast, when ddGTP was replaced with dGTP in reaction mixtures, DNA synthesis proceeded with linear kinetics for up to 10 min. These results suggested that in the presence of all four dNTPs, active templates supported more than 40 rounds of DNA synthesis.  相似文献   

13.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

14.
A Aoyama  M Hayashi 《Cell》1986,47(1):99-106
Replication of a replicative form DNA of bacteriophage phi X174 initiates by rolling-circle synthesis of the viral DNA followed by discontinuous synthesis of the complementary DNA. Gene C protein of phi X174, which is involved in DNA packaging, inhibits the rolling-circle DNA synthesis by binding to the initiation complex in vitro. The gene C protein-associated initiation complex can synthesize and package the viral DNA to produce infectious phage when supplemented with phi X174 gene J protein and the prohead. Multiple rounds of phage synthesis occur without dissociation of the gene C protein from the complex. These results indicate that gene C protein is central in the switch from replication of a replicative form DNA to synthesis and concomitant packaging of viral DNA into phage capsid, which occurs in the late stage of infection.  相似文献   

15.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

16.
The replication of bacteriophage phi X 174 replicative-form DNA has been studied by structural analysis of pulse-labeled replicative-intermediate molecules. Such intermediates were identified by pulse-labeling with [13H]thymidine and separated into four major fractions (A, B, C, and D) in a propidium diiodide-cesium chloride buoyand density gradient. Sedimentation analysis of each of these fractions suggests the following features of phi X replicative-form DNA replication in vivo. (i) At the end of one cycle of replication, one daughter replicative form (RFII) contains a nascent plus (+) strand of the unit viral length, and the other daughter RFII contains small fragments of nascent minus (-) strand. (ii) Asymmetry is also associated with production of the first supercoiled RFI after addition of pulse label in that only the minus strand becomes radioactive. (iii) A supercoiled DNA (RFI') seems to occur in vivo. This DNA is observed at a position of greater density in a propidium diiodide-cesium chloride buoyant density gradient than normal RFI. (iv) A novel DNA component is observed, at a density greater than RFI, which releases, in alkali, a plus strand longer (1.5 to 1.7 times) than the unit viral length. These results are discussed in terms of the possible sequence of events in phi X 174 replicative-form replication in vivo.  相似文献   

17.
The purified A protein and A* protein of bacteriophage phi X174 have been tested for endonuclease activity on single stranded viral phi X174 DNA. The A protein (55.000 daltons) nicks single-stranded DNA in the same way and at the same place as it does superhelical RFI DNA, at the origin of DNA replication. The A* protein (37.000 daltons) can cleave the single-stranded viral DNA at many different sites. It has however a strong preference for the origin of replication. Both proteins generate 3'OH ends and blocked 5' termini at the nick site.  相似文献   

18.
Replacement of virtually all the cytosine residues with 5-methylcytosine residues in the complementary strand of the replicative form (RF) of phi X174 DNA caused a 300- to 500-fold loss in its transfecting activity. Similar results were obtained with analogously methylated M13 RF. Transfection experiments with phi X RF hemimethylated in only part of the molecule, as assessed by analysis with restriction endonucleases, indicated that gene A of phi X, which needs to be nicked at a specific site by the gene A protein for RF replication, was not the main target for this inhibition by DNA methylation. We propose that the loss of transfecting activity was due to hemimethylation of the phi X RF interfering with the processively catalyzed movement of the replication fork.  相似文献   

19.
Bacteriophage phi X174 gene A encodes two proteins: the gene A protein and the smaller A protein, which is synthesized from a translational start signal within the A gene in the same reading frame as the gene A protein. The gene A protein is involved in initiation, elongation and termination of rolling circle DNA replication. The role of the A protein in the life cycle of phi X174, however, is unknown. Using oligonucleotide-directed mutagenesis a viable phi X174 mutant was constructed in which the ATG start codon of the A protein was changed into an ATT codon. This mutant, phi X-4499T, does not synthesize A protein. The burst size of phi X-4499T amounted to 50% of that of wild type phi X174. This indicates that A protein, although advantageous for phage reproduction, is not essential during the life cycle of bacteriophage phi X174.  相似文献   

20.
We previously demonstrated (Guo et al., 1987. Nucl. Acids Res. 15, 7081-7090) that purified proheads of bacteriophage phi 29 contain an RNA of 120 bases which is essential for DNA packaging. Here we report that this RNA exists primarily as a polymer of ca. 174 residues in phage-infected cells and that ca. 54 bases are cleaved from its 3'-terminus by adventitious nucleases during the purification of proheads. The long and short forms of the RNA had similar activity in in vitro DNA packaging and phage assembly. We report the sequence of the long form of the RNA and show that similar long and short forms can be isolated from the proheads of the phi 29 relatives phi 21, phi 15 and SF5. The concentration dependence in the reconstitution of RNA-free proheads suggests that one copy of the RNA is sufficient to restore DNA packaging activity to RNA-free proheads. However, quantitative measurements indicate that 5 to 6 copies of the RNA are present on proheads isolated from phage-infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号