首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca(2+)-regulated heat-stable protein (CRHSP-28) is a member of the TPD52 protein family that has been shown to regulate Ca(2+)-dependent secretory activity in pancreatic acinar cells. Immunofluorescence microscopy of isolated lobules demonstrated that CRHSP-28 is localized to a supranuclear apical compartment in acini and accumulates immediately below the apical membrane within 2 min of CCK octapeptide (CCK-8) stimulation. Dual-immunofluorescence microscopy demonstrated an endosomal localization of CRHSP-28 that strongly overlapped with early endosomal antigen-1 (EEA-1) on vesicular structures throughout the apical cytoplasm but showed only minimal overlap with the transferrin receptor, which is present in basolaterally derived endosomes. Significant overlapping of CRHSP-28 with the trans-Golgi network marker-38 was also noted in supranuclear regions of acini. Interestingly, treatment of lobules with brefeldin A reversibly disrupted the vesicular localization of CRHSP-28 and EEA-1 within the apical cytoplasm. The CCK-8-induced accumulation of CRHSP-28 in subapical regions of acini was not altered by inhibition of apical endocytosis with the actin filament-disrupting agent latrunculin B. Immunoelectron microscopy confirmed that CRHSP-28 is associated with the limiting membrane of irregularly shaped vesicular structures of low electron density in the apical cytoplasm that are positive for EEA-1 staining. Sparse, but significant, CRHSP-28 immunoreactivity was also observed along the limiting membrane of zymogen granules. Consistent with immunofluorescence data, CRHSP-28 was found to accumulate in clusters on endosomes and positioned between zymogen granules below the cell apex on CCK-8 stimulation. These data indicate that CRHSP-28 is present within endocytic and exocytic compartments of acinar cells and is acutely regulated by secretagogue stimulation.  相似文献   

2.
CRHSP-28 is a member of the tumor protein D52 protein family that was recently shown to regulate Ca(2+)-stimulated secretory activity in streptolysin-O-permeabilized acinar cells (Thomas, D. H., Taft, W. B., Kaspar, K. M., and Groblewski, G. E. (2001) J. Biol. Chem. 276, 28866-28872). In the present study, the Ca(2+)-sensitive phospholipid-binding protein annexin VI was purified from rat pancreas as a CRHSP-28-binding protein. The interaction between CRHSP-28 and annexin VI was demonstrated by coimmunoprecipitation and gel-overlay assays and was shown to require low micromolar levels of free Ca(2+), indicating these molecules likely interact under physiological conditions. Immunofluorescence microscopy confirmed a dual localization of CRHSP-28 and annexin VI, which appeared in a punctate pattern in the supranuclear and apical cytoplasm of acini. Stimulation of cells for 5 min with the secretagogue cholecystokinin enhanced the colocalization of CRHSP-28 and annexin VI within regions of acini immediately below the apical plasma membrane. Tissue fractionation revealed that CRHSP-28 is a peripheral membrane protein that is highly enriched in smooth microsomal fractions of pancreas. Further, the content of CRHSP-28 in microsomes was significantly reduced in pancreatic tissue obtained from rats that had been infused with a secretory dose of cholecystokinin for 40 min, demonstrating that secretagogue stimulation transiently alters the association of CRHSP-28 with membranes in cells. Collectively, the Ca(2+)-dependent binding of CRHSP-28 and annexin VI, together with their colocalization in the apical cytoplasm, is consistent with a role for these molecules in acinar cell membrane trafficking events that are essential for digestive enzyme secretion.  相似文献   

3.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   

4.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

5.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

6.
Endogenous phosphorylation of the crude membrane fraction of cultured 3Y1 fibroblast cells was enhanced by the addition of Ca2+/calmodulin. Both Ca2+/calmodulin-dependent protein kinase activity and its substrate were present in a cytoskeletal fraction, obtained as a pellet after washing of the membrane fraction with 2 mM EGTA, 0.6 M NaCl, and 1% Triton X-100. The phosphorylatable protein in the Triton X-insoluble fraction was identified by immunoblotting as vimentin. This endogenous phosphorylation induced by calmodulin was inhibited by the addition of KN-62, a specific Ca2+/calmodulin-dependent protein kinase II inhibitor, in a dose-dependent manner. However, phosphorylation of the 59 kDa protein (vimentin) in this fraction was not stimulated by adding both phosphatidyl serine and cAMP, thereby suggesting the absence of protein kinase C or of cAMP-dependent protein kinase in this fraction. The protein kinase associated with the Triton X-insoluble fraction phosphorylated the Ca2+/calmodulin-dependent protein kinase II-specific site of synapsin I from the bovine cortex. Two-dimensional phosphopeptide maps of vimentin indicated that a major phosphopeptide phosphorylated by the endogenous calmodulin-dependent kinase also appears to be the same as a major phosphopeptide phosphorylated by the exogenous Ca2+/calmodulin-dependent protein kinase II. Our results suggest that cytoskeleton-associated Ca2+/calmodulin-dependent protein kinase II regulates dynamic cellular functions through the phosphorylation of cytoskeletal elements in non-neural cells.  相似文献   

7.
CRHSP-28 is a Ca(2+)-regulated heat-stable phosphoprotein, abundant in the apical cytoplasm of epithelial cells that are specialized in exocrine protein secretion. To define a functional role for the protein in pancreatic secretion, recombinant CRHSP-28 (rCRHSP-28) was introduced into streptolysin-O-permeabilized acinar cells, and amylase secretion in response to elevated Ca(2+) was determined. Secretion was enhanced markedly by rCRHSP-28 over a time course that closely corresponded with the loss of the native protein from the intracellular compartment. No effects of rCRHSP-28 were detected until approximately 50% of the native protein was lost from the cytosol. Secretion was enhanced by rCRHSP-28 over a physiological range of Ca(2+) concentrations with 2-3-fold increases in amylase release occurring in response to low micromolar levels of free Ca(2+). Further, rCRHSP-28 augmented secretion in a concentration-dependent manner with minimal and maximal effects occurring at 1 and 25 microg/ml, respectively. Covalent cross-linking experiments demonstrated that native CRHSP-28 was present in a 60-kDa complex in cytosolic fractions and in a high molecular mass complex in particulate fractions, consistent with the slow leak rate of the protein from streptolysin-O-permeabilized cells. Probing acinar lysates with rCRHSP-28 in a gel-overlay assay identified two CRHSP-28-binding proteins of 35 (pp35) and 70 kDa (pp70). Interestingly, preparation of lysates in the presence of 1 mm Ca(2+) resulted in a marked redistribution of both proteins from a cytosolic to a Triton X-100-insoluble fraction, suggesting a Ca(2+)-sensitive interaction of these proteins with the acinar cell cytoskeleton. In agreement with our previous study immunohistochemically localizing CRHSP-28 around secretory granules in acinar cells, gel-overlay analysis revealed pp70 copurified with acinar cell secretory granule membranes. These findings demonstrate an important cell physiological function for CRHSP-28 in the Ca(2+)-regulated secretory pathway of acinar cells.  相似文献   

8.
Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important intracellular mediators in the mediation of stimulus-secretion coupling and excitation-contraction coupling in a wide variety of cell types. We attempted to identify and characterize the functional roles of CaMK in mediating pancreatic enzyme secretion. Immunoprecipitation and immunoblotting studies using a CaMKII or CaMKIV antibody showed that rat pancreatic acini expressed both CaMKII and CaMKIV. Phosphotransferase activities of CaMKs were measured by a radioenzyme assay (REA) using autocamtide II, peptide gamma and myosin P-light chain as substrates. Although CaMKII and CaMKIV use autocamtide II as a substrate, peptide gamma is more efficiently phosphorylated by CaMKIV than by CaMKII. Intact acini were stimulated with cholecystokinin (CCK)-8, carbachol (CCh) and the high-affinity CCK-A receptor agonist, CCK-OPE, and the cell lysates were used for REA. CCK-8, CCh and CCK-OPE caused a concentration-dependent increase in CaMKs activities. When autocamtide II was used, maximal increases were 1.5-1.8-fold over basal (20.2+/-2.0 pmol/min/mg protein), with peaks occurring at 20 min after cell stimulation. In separate studies that used peptide gamma, CCK-8, CCh and CCK-OPE dose-dependently increased CaMKIV activities. Maximal increases were 1.5-2.4-fold over basal (30.7+/-3. 2 pmol/min/mg protein) with peaks occurring at 20 min after cell stimulation. Peak increases after cell stimulation induced by peptide gamma were 1.8-2.8-fold higher than those induced by autocamtide II. CCK-8, CCh and CCK-OPE also significantly increased phosphotransferase activities of myosin light chain kinase (MLCK) substrate (basal: 4.4+/-0.7 pmol/min/mg protein). However, maximal increases induced by MLCK substrate were less than 10% of those occurring in peptide gamma. Characteristics of the phosphotransferase activity were also different between autocamtide II and peptide gamma. When autocamtide II was used, elimination of medium Ca(2+) in either cell lysates or intact cells resulted in a significant decrease in the activity, whereas it had no or little effect when peptide gamma was used. This suggests that Ca(2+) influx from the extracellular space is not fully required for CaMKIV activity and Ca(2+) is not a prerequisite for phosphotransferase activity once CaMKIV is activated by either intracellular Ca(2+) release or intracellular Ca(2+) oscillations. The specific CaMKII inhibitor KN-62 (50 microM) had no effect on the CaMKIV activity and pancreatic enzyme secretion elicited by CCK-8, CCh and CCK-OPE. The specific MLCK inhibitor, ML-9 (10 microM), also did not inhibit CCK-8-stimulated pancreatic amylase secretion. In contrast, wide spectrum CaMK inhibitors, K-252a (1 microM) and KT5926 (3 microM), significantly inhibited CaMKIV activities and enzyme secretion evoked by secretagogues. Thus, CaMKIV appears to be an important intracellular mediator during stimulus-secretion coupling of rat pancreatic acinar cells.  相似文献   

9.
P Feick  S Gilhaus  R Blum  F Hofmann  I Just  I Schulz 《FEBS letters》1999,451(3):269-274
Disruption of the actin cytoskeleton in AR4-2J pancreatic acinar cells led to an increase in cytosolic protein tyrosine phosphatase activity, abolished bombesin-induced tyrosine phosphorylation and reduced bombesin-induced amylase secretion by about 45%. Furthermore, both tyrosine phosphorylation and amylase secretion induced by phorbol ester-induced activation of protein kinase C were abolished. An increase in the cytosolic free Ca2+ concentration by the Ca2+ ionophore A23187 had no effect on tyrosine phosphorylation but induced amylase release. Only when added together with phorbol ester, the same level of amylase secretion as with bombesin was reached. This amylase secretion was inhibited by about 40%, by actin cytoskeleton disruption similar to that induced by bombesin. We conclude that actin cytoskeleton-controlled protein tyrosine phosphatase activity downstream of protein kinase C activity regulates tyrosine phosphorylation which in part is involved in bombesin-stimulated amylase secretion.  相似文献   

10.
Ca2+-regulated heat-stable protein of 24 kDa (CRHSP-24) is a serine phosphoprotein originally identified as a physiological substrate for the Ca2+-calmodulin regulated protein phosphatase calcineurin (PP2B). CRHSP-24 is a paralog of the brain-specific mRNA-binding protein PIPPin and was recently shown to interact with the STYX/dead phosphatase protein in developing spermatids (Wishart MJ and Dixon JE. Proc Natl Acad Sci USA 99: 2112-2117, 2002). Investigation of the effects of phorbol ester (12-o-tetradecanoylphorbol-13-acetate; TPA) and cAMP analogs in 32P-labeled pancreatic acini revealed that these agents acutely dephosphorylated CRHSP-24 by a Ca2+-independent mechanism. Indeed, cAMP- and TPA-mediated dephosphorylation of CRHSP-24 was fully inhibited by the PP1/PP2A inhibitor calyculin A, indicating that the protein is regulated by an additional phosphatase other than PP2B. Supporting this, CRHSP-24 dephosphorylation in response to the Ca2+-mobilizing hormone cholecystokinin was differentially inhibited by calyculin A and the PP2B-selective inhibitor cyclosporin A. Stimulation of acini with secretin, a secretagogue that signals through the cAMP pathway in acini, induced CRHSP-24 dephosphorylation in a concentration-dependent manner. Isoelectric focusing and immunoblotting indicated that elevated cellular Ca2+ dephosphorylated CRHSP-24 on at least three serine sites, whereas cAMP and TPA partially dephosphorylated the protein on at least two sites. The cAMP-mediated dephosphorylation of CRHSP-24 was inhibited by low concentrations of okadaic acid (10 nM) and fostriecin (1 microM), suggesting that CRHSP-24 is regulated by PP2A or PP4. Collectively, these data indicate that CRHSP-24 is regulated by diverse and physiologically relevant signaling pathways in acinar cells, including Ca2+, cAMP, and diacylglycerol.  相似文献   

11.
The effects of cyclic AMP-dependent protein kinase (cAMP-PK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation on the binding of bovine tau to tubulin and calpain-mediated degradation of tau were studied. Both cAMP-PK and CaMKII readily phosphorylated tau and slowed the migration of tau on sodium dodecyl sulfate-containing polyacrylamide gels. However, cAMP-PK phosphorylated tau to a significantly greater extent than CaMKII (1.5 and 0.9 mol of 32P/mol of tau, respectively), and phosphorylation of tau by cAMP-PK resulted in a greater shift to a more acidic, less heterogeneous pattern on two-dimensional nonequilibrium pH gradient gels compared with CaMKII phosphorylation. Two-dimensional phosphopeptide maps indicate that cAMP-PK phosphorylates a site or sites on tau that are phosphorylated by CaMKII, as well as a unique site or sites that are not phosphorylated by CaMKII. Phosphorylation of tau by cAMP-PK significantly decreased tubulin binding and, as previously reported, also inhibited the calpain-induced degradation of tau. CaMKII phosphorylation of tau did not alter either of these parameters. These results suggest that the phosphorylation of site(s) on the tau molecule uniquely accessible to cAMP-PK contributed to the decreased tau-tubulin binding and increased resistance to calpain hydrolysis.  相似文献   

12.
Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins   总被引:5,自引:0,他引:5  
Tyrosine hydroxylase (TH) is phosphorylated by CaM kinase II and is activated in situ in response to a variety of stimuli that increase intracellular Ca(2+). We report here, using baculovirus-expressed TH, that the 14-3-3 protein binds and activates the expressed TH when the enzyme is phosphorylated at Ser-19, a site of CaM kinase II-dependent phosphorylation located in the regulatory domain of TH. Site-directed mutagenesis showed that a TH mutant in which Ser-19 was substituted by Ala retained enzymatic activity at the same level as the non-mutated enzyme, but was a poor substrate for CaM kinase II and did not bind the 14-3-3 protein. Likewise, a synthetic phosphopeptide (FRRAVpSELDA) corresponding to the part of the TH sequence, including phosphoSer-19, inhibited the interaction between the expressed TH and 14-3-3, while the phosphopeptide (GRRQpSLIED) corresponding to the site of cAMP-dependent phosphorylation (Ser-40) had little effect on complex formation. The complex was very stable with a dissociation constant of 3 nM. Furthermore, analysis of PC12nnr5 cells transfected with myc-tagged 14-3-3 showed that 14-3-3 formed a complex with endogenous TH when the cultured cells were exposed to a high K(+) concentration that increases intracellular Ca(2+) and phosphorylation of Ser-19 in TH. These findings suggest that the 14-3-3 protein participates in the stimulus-coupled regulation of catecholamine synthesis that occurs in response to depolarization-evoked, Ca(2+)-dependent phosphorylation of TH.  相似文献   

13.
CaMKII (calcium/calmodulin-stimulated protein kinase II) is a multifunctional protein kinase that regulates normal neuronal function. CaMKII is regulated by multi-site phosphorylation, which can alter enzyme activity, and targeting to cellular microdomains through interactions with binding proteins. These proteins integrate CaMKII into multiple signalling pathways, which lead to varied functional outcomes following CaMKII phosphorylation, depending on the identity and location of the binding partner. A new phosphorylation site on CaMKII (Thr253) has been identified in vivo. Thr253 phosphorylation controls CaMKII purely by targeting, does not effect enzyme activity, and occurs in response to physiological and pathological stimuli in vivo, but only in CaMKII molecules present in specific cellular locations. This new phosphorylation site offers a potentially novel regulatory mechanism for controlling functional responses elicited by CaMKII that are restricted to specific subcellular locations and/or certain cell types, by controlling interactions with proteins that are expressed in the cell at that location.  相似文献   

14.
Abstract: PEA-15 (phosphoprotein enriched in astrocytes, Mr = 15,000) is an acidic serine-phosphorylated protein highly expressed in the CNS, where it can play a protective role against cytokine-induced apoptosis. PEA-15 is a major substrate for protein kinase C. Endothelins, which are known to exert pleiotropic effects on astrocytes, were used to analyze further the processes involved in PEA-15 phosphorylation. Endothelin-1 or endothelin-3 (0.1 µ M ) induced a robust phosphorylation of PEA-15 that was abolished by the removal of extracellular calcium, but only diminished by inhibitors of protein kinase C. Microsequencing of phosphopeptides generated by digestion of PEA-15 following endothelin-1 treatment identified two phosphorylated residues: Ser104, previously recognized as the protein kinase C site, and a novel phosphoserine, Ser116, located in a consensus motif for either protein kinase casein kinase II or calcium/calmodulin-dependent protein kinase II (CaMKII). Partly purified PEA-15 was a substrate in vitro for CaMKII, but not for casein kinase II. Two-dimensional phosphopeptide mapping demonstrated that the site phosphorylated in vitro by CaMKII was also phosphorylated in intact astrocytes in response to endothelin. CaMKII phosphorylated selectively Ser116 and had no effect on Ser104, but in vitro phosphorylation by CaMKII appeared to facilitate further phosphorylation by protein kinase C. Treatment of intact astrocytes with okadaic acid enhanced the phosphorylation of the CaMKII site. These results demonstrate that PEA-15 is phosphorylated in astrocytes by CaMKII (or a related kinase) and by protein kinase C in response to endothelin.  相似文献   

15.
The related adhesion focal tyrosine kinase (RAFTK), a member of the focal adhesion kinase (FAK) family and highly expressed in brain, is a key mediator of various extracellular signals that elevate intracellular Ca(2+) concentration. We investigated RAFTK and FAK signaling upon nerve growth factor (NGF) stimulation of PC12 cells. NGF induced the tyrosine phosphorylation of RAFTK in a time- and dose-dependent manner, whereas no change in the tyrosine phosphorylation of FAK was observed. Chemical inhibition showed that RAFTK phosphorylation was inhibited by blocking phospholipase Cgamma activity or intracellular Ca(2+). Blocking of extracellular Ca(2+) or phosphatidylinositol 3-kinase activity partially reduced the phosphorylation of RAFTK. In addition, disruption of actin polymerization abolished RAFTK phosphorylation, indicating that an intact actin-based cytoskeletal organization is required for RAFTK phosphorylation. The focal adhesion molecule paxillin was co-immunoprecipitated with RAFTK, and its tyrosine phosphorylation was increased in a Ca(2+)-dependent manner upon NGF stimulation. Confocal microscopic analysis demonstrated that RAFTK translocated from the cytoplasm to potential neurite initiation sites at the cell periphery, where RAFTK co-localized with paxillin and bundled actin in the early phase (within 5 min) of NGF stimulation, whereas FAK co-localized with paxillin at "point contacts," which are the primary cell adhesion sites in neuronal cells. Significant distribution of RAFTK was observed in the neurites and growth cones of differentiated PC12 cells. Furthermore, potassium depolarization induced the tyrosine phosphorylation of both RAFTK and paxillin in an intracellular Ca(2+)-dependent manner in the differentiated PC12 cells. Taken together, these results demonstrate that RAFTK is involved in NGF-induced cytoskeletal organization and may play a role in neurite and growth cone function(s).  相似文献   

16.
We reported that one of the isoquinolinesulfonamide derivatives, KN-62, is a potent and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M. and Hidaka, H. (1990) J. Biol. Chem. 265, 4315-4320). We have now investigated the inhibitory property of a newly synthesized methoxybenzenesulfonamide, KN-93, on CaMKII activity in situ and in vitro. KN-93 elicited potent inhibitory effects on CaMKII phosphorylating activity with an inhibition constant of 0.37 microM but this compound had no significant effects on the catalytic activity of cAMP-dependent protein kinase, Ca2+/phospholipid dependent protein kinase, myosin light chain kinase and Ca(2+)-phosphodiesterase. KN-93 also inhibited the autophosphorylation of both the alpha- and beta-subunits of CaMKII. Kinetic analysis indicated that KN-93 inhibits CaMKII, in a competitive fashion against calmodulin. To evaluate the regulatory role of CaMKII on catecholamine metabolism, we examined the effect of KN-93 on dopamine (DA) levels in PC12h cells. The DA levels decreased in the presence of KN-93. Further, the tyrosine hydroxylase (TH) phosphorylation induced by KCl or acetylcholine was significantly suppressed by KN-93 in PC12h cells while events induced by forskolin or 8-Br-cAMP were not affected. These results suggest that KN-93 inhibits DA formation by modulating the reaction rate of TH to reduce the Ca(2+)-mediated phosphorylation levels of the TH molecule.  相似文献   

17.
Neurofilament-L (NF-L), one subunit of the neuronal intermediate filaments, is a major element of neuronal cytoskeletons. The dynamics of NF-L are regulated by phosphorylation of its head domain. The phosphorylation sites of the NF-L head domain by protein kinase A, protein kinase C, and Rho-associated kinase have been previously identified, and those by calcium/calmodulin-dependent protein kinase II (CaMKII) were identified in this study. A series of site- and phosphorylation state-specific antibodies against NF-L was prepared to investigate NF-L phosphorylation in neuronal systems. Long-term potentiation (LTP) is a cellular model of neuronal plasticity that is thought to involve the phosphorylation of various proteins. NF-L is considered a possible substrate for phosphorylation. During LTP stimulation of mouse hippocampal slices, the series of antibodies demonstrated the increase in the phosphorylation level of Ser(57) in NF-L and the visualization of the localized distribution of Ser(57) phosphorylation in a subpopulation of apical dendrites of the pyramidal neurons. Furthermore, Ser(57) phosphorylation during LTP is suggested to be mediated by CaMKII. Here we show that NF-L is phosphorylated by CaMKII in a subpopulation of apical dendrites during LTP, indicating that Ser(57) is a novel phosphorylation site of NF-L in vivo related to the neuronal signal transduction.  相似文献   

18.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

19.
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in the biosynthesis of serotonin. TPH was once thought to be a single-gene product but it is now known to exist in two isoforms. TPH1 is found in the periphery and pineal gland whereas TPH2 is expressed specifically in the CNS. Both TPH isoforms are known to be regulated by protein kinase-dependent phosphorylation and the sites of modification of TPH1 by protein kinase A have been identified. While TPH2 is activated by calcium, calmodulin-dependent protein kinase II (CaMKII), the sites at which this isoform is modified are not known. Treatment of wild-type TPH2 with CaMKII followed by mass spectrometry analysis revealed that the enzyme was activated and phosphorylated at a single site, serine-19. Mutagenesis of serine-19 to alanine did not alter the catalytic function of TPH2 but this mutant enzyme was neither activated nor phosphorylated by CaMKII. A phosphopeptide bracketing phosphoserine-19 in TPH2 was used as an antigen to generate polyclonal antibodies against phosphoserine-19. The antibodies are highly specific for phosphoserine-19 in TPH2. The antibodies do not react with wild-type TPH2 or TPH1 and they do not recognize phophoserine-58 or phosphoserine-260 in TPH1. These results establish that activation of TPH2 by CaMKII is mediated by phosphorylation of serine-19 within the regulatory domain of the enzyme. Production of a specific antibody against the CaMKII phosphorylation site in TPH2 represents a valuable tool to advance the study of the mechanisms regulating the function of this important enzyme.  相似文献   

20.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号