首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine how neurons within the right atrial ganglionated plexus (RAGP) and posterior atrial ganglionated plexus (PAGP) interact to modulate right atrial chronotropic, dromotropic, and inotropic function, particularly with respect to their extracardiac vagal and sympathetic efferent neuronal inputs. Surgical ablation of the PAGP (PAGPx) attenuated vagally mediated bradycardia by 26%; it reduced heart rate slowing evoked by vagal stimulation superimposed on sympathetically mediated tachycardia by 36%. RAGP ablation (RAGPx) eliminated vagally mediated bradycardia, while retaining the vagally induced suppression of sympathetic-mediated tachycardia (-83%). After combined RAGPx and PAGPx, vagal stimulation still reduced sympathetic-mediated tachycardia (-47%). After RAGPx alone and after PAGPx alone, stimulation of the vagi still produced negative dromotropic effects, although these changes were attenuated compared with the intact state. Negative dromotropic responses to vagal stimulation were further attenuated after combined ablation, but parasympathetic inhibition of atrioventricular nodal conduction was still demonstrable in most animals. Finally, neither RAGPx nor PAGPx altered autonomic regulation of right atrial inotropic function. These data indicate that multiple aggregates of neurons within the intrinsic cardiac nervous system are involved in sinoatrial nodal regulation. Whereas parasympathetic efferent neurons regulating the right atrium, including the sinoatrial node, are primarily located within the RAGP, prejunctional parasympathetic-sympathetic interactions regulating right atrial function also involve neurons within the PAGP.  相似文献   

2.
Our objective was to determine whether atrial fibrillation (AF) results from excessive activation of intrinsic cardiac neurons (ICNs) and, if so, whether select subpopulations of neurons therein represent therapeutic targets for suppression of this arrhythmogenic potential. Trains of five electrical stimuli (0.3-1.2 mA, 1 ms) were delivered during the atrial refractory period to mediastinal nerves (MSN) on the superior vena cava to evoke AF. Neuroanatomical studies were performed by injecting the neuronal tracer DiI into MSN sites that induced AF. Functional studies involved recording of neuronal activity in situ from the right atrial ganglionated plexus (RAGP) in response to MSN stimulation (MSNS) prior to and following neuromodulation involving either preemptive spinal cord stimulation (SCS; T(1)-T(3), 50 Hz, 200-ms duration) or ganglionic blockade (hexamethonium, 5 mg/kg). The tetramethylindocarbocyanine perchlorate (DiI) neuronal tracer labeled a subset (13.2%) of RAGP neurons, which also colocalized with cholinergic or adrenergic markers. A subset of DiI-labeled RAGP neurons were noncholinergic/nonadrenergic. MSNS evoked an ~4-fold increase in RAGP neuronal activity from baseline, which SCS reduced by 43%. Hexamethonium blocked MSNS-evoked increases in neuronal activity. MSNS evoked AF in 78% of right-sided MSN sites, which SCS reduced to 33% and hexamethonium reduced to 7%. MSNS-induced bradycardia was maintained with SCS but was mitigated by hexamethonium. We conclude that MSNS activates subpopulations of intrinsic cardiac neurons, thereby resulting in the formation of atrial arrhythmias leading to atrial fibrillation. Stabilization of ICN local circuit neurons by SCS or the local circuit and autonomic efferent neurons with hexamethonium reduces the arrhythmogenic potential.  相似文献   

3.
To quantify the concurrent transduction capabilities of spatially distributed intrinsic cardiac neurons, the activities generated by atrial vs. ventricular intrinsic cardiac neurons were recorded simultaneously in 12 anesthetized dogs at baseline and during alterations in the cardiac milieu. Few (3%) identified atrial and ventricular neurons (2 of 72 characterized neurons) responded solely to regional mechanical deformation, doing so in a tightly coupled fashion (cross-correlation coefficient r = 0.63). The remaining (97%) atrial and ventricular neurons transduced multimodal stimuli to display stochastic behavior. Specifically, ventricular chemosensory inputs modified these populations such that they generated no short-term coherence among their activities (cross-correlation coefficient r = 0.21 +/- 0.07). Regional ventricular ischemia activated most atrial and ventricular neurons in a noncoupled fashion. Nicotinic activation of atrial neurons enhanced ventricular neuronal activity. Acute decentralization of the intrinsic cardiac nervous system obtunded its neuron responsiveness to cardiac sensory stimuli. Most atrial and ventricular intrinsic cardiac neurons generate concurrent stochastic activity that is predicated primarily upon their cardiac chemotransduction. As a consequence, they display relative independent short-term (beat-to-beat) control over regional cardiac indexes. Over longer time scales, their functional interdependence is manifest as the result of interganglionic interconnections and descending inputs.  相似文献   

4.
The objective of the study was to determine if chronic interruption of all extrinsic nerve inputs to the heart alters cholinergic-mediated responses within the intrinsic cardiac nervous system (ICN). Extracardiac nerve inputs to the ICN were surgically interrupted (ICN decentralized). Three weeks later, the intrinsic cardiac right atrial ganglionated plexus (RAGP) was removed and intrinsic cardiac neuronal responses were evaluated electrophysiologically. Cholinergic receptor abundance was evaluated using autoradiography. In sham controls and chronic decentralized ICN ganglia, neuronal postsynaptic responses were mediated by acetylcholine, acting at nicotinic and muscarinic receptors. Muscarine- but not nicotine-mediated synaptic responses that were enhanced after chronic ICN decentralization. After chronic decentralization, muscarine facilitation of orthodromic neuronal activation increased. Receptor autoradiography demonstrated that nicotinic and muscarinic receptor density associated with the RAGP was unaffected by decentralization and that muscarinic receptors were tenfold more abundant than nicotinic receptors in the right atrial ganglia in each group. After chronic decentralization of the ICN, intrinsic cardiac neurons remain viable and responsive to cholinergic synaptic inputs. Enhanced muscarinic responsiveness of intrinsic cardiac neurons occurs without changes in receptor abundance.  相似文献   

5.
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.  相似文献   

6.
We sought to determine the behavior of intrinsic cardiac neurons in human subjects undergoing cardiac surgery and to correlate their activity with hemodynamics status. A lead II electrocardiogram, pulmonary artery pressure, and systemic arterial pressure were recorded along with extracellular activity generated by right atrial neurons in 10 patients undergoing coronary artery bypass surgery. Identified neurons generated spontaneously activity that was, for the most part, unrelated to the cardiac cycle. Most neurons were activated by gentle mechanical distortion of ventricular epicardial loci. The activity generated by neurons in each patient increased when arterial pressure increased and decreased when arterial pressure fell. Intrinsic cardiac neurons continued to generate activity during cardioplegia and cardiopulmonary bypass, but at reduced levels. Normal neuronal activity was restored postbypass. It is concluded that human intrinsic cardiac neurons generate spontaneous activity and that many receive inputs from ventricular mechanosensory neurites. The latter may account for the fact that their behavior depends, in part, on cardiac dynamics. They are also sensitive to intravenously administered pharmacological agents. These data also indicate that cardiopulmonary bypass and cardioplegia do not induce residual depression of their function.  相似文献   

7.
In 20 anesthetized dogs the thoracic autonomic nerves were carefully exposed in order to determine which produced cardiovascular responses when the afferent or efferent component of each was stimulated. Efferent parasympathetic and sympathetic fibers arise from the caudal cervical ganglion regions bilaterally as well as from the vagus caudally to that ganglion. The majority of negative chromotropic, dromotropic and inotropic fibers arise from the vagus or near the recurrent laryngeal nerves; however, some small parasympathetic fibers also arise from the vagi down to the level of the pulmonary vessels. Efferent sympathetic nerves are relatively large with the exception of the stellate cardiac nerves, and produce specific positive chronotropic or inotropic responses. Afferent fibers are numerous in the recurrent cardiac, innominate, ventromedial and dorsal nerves and not very numerous in both stellate cardiac nerves as well as in the nerves at the level of the pulmonary vessels; thus there are numerous cholinergic and adrenergic efferent fibers which exhibit specific chronotropic or inotropic responses. The correlation between neural anatomy and specific physiological cardiodynamics illustrates beautifully the interrelationship of structure and function which exists within the autonomic nervous system.  相似文献   

8.
J A Armour  B X Yuan  C K Butler 《Peptides》1990,11(4):753-761
In order to study the effects of peptides on intrinsic cardiac neurons, substance P, bradykinin, oxytocin, calcitonin gene related peptide, atrial natriuretic peptide and vasoactive intestinal peptide were administered into canine atrial or ventricular ganglionated plexi. When substance P was injected into right atrial or cranial medial ventricular ganglionated plexi heart rate, atrial force and ventricular intramyocardial pressures were augmented. No cardiac changes occurred when similar volumes of saline (i.e., peptide vehicle) were injected into these ganglionated plexi. When bradykinin was injected into atrial or ventricular ganglionated plexi heart rate, atrial force and ventricular force were augmented in approximately 50% and depressor responses were elicited in approximately 50% of these animals. When oxytocin was injected into right atrial ventral ganglionated plexi heart rate and atrial forces were reduced in five of ten dogs studied. No cardiac changes occurred when oxytocin was injected into left atrial or ventricular ganglionated plexi. No responses were elicited when calcitonin gene related peptide, atrial natriuretic peptide or vasoactive intestinal peptide was administered into atrial or ventricular ganglionated plexi. Following acute decentralization of the heart, no significant responses were elicited by repeat administrations of substance P, bradykinin or oxytocin, implying that connectivity with central nervous system neurons was necessary for consistent responses to be elicited. It is concluded that substance P, bradykinin and oxytocin can affect neurons on the heart such that cardiodynamics are modified, these different peptides eliciting different cardiac responses.  相似文献   

9.
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.  相似文献   

10.
The intrinsic cardiac plexus represents a major peripheral integration site for neuronal, hormonal, and locally produced neuromodulators controlling efferent neuronal output to the heart. This study examined the interdependence of norepinephrine, muscarinic agonists, and ANG II, to modulate intrinsic cardiac neuronal activity. Intracellular voltage recordings from whole-mount preparations of the guinea pig cardiac plexus were used to determine changes in active and passive electrical properties of individual intrinsic cardiac neurons. Application of either adrenergic or muscarinic agonists induced changes in neuronal resting membrane potentials, decreased afterhyperpolarization duration of single action potentials, and increased neuronal excitability. Adrenergic responses were inhibited by removal of extracellular calcium ions, while muscarinic responses were inhibited by application of TEA. The adrenergic responses were heterogeneous, responding to a variety of receptor-specific agonists (phenylephrine, clonidine, dobutamine, and terbutaline), although α-receptor agonists produced the most frequent responses. Application of ANG II alone produced a significant increase in excitability, while application of ANG II in combination with either adrenergic or muscarinic agonists produced a much larger potentiation of excitability. The ANG II-induced modulation of firing was blocked by the angiotensin type 2 (AT(2)) receptor inhibitor PD 123319 and was mimicked by the AT(2) receptor agonist CGP-42112A. AT(1) receptor blockade with telmasartin did not alter neuronal responses to ANG II. These data demonstrate that ANG II potentiates both muscarinically and adrenergically mediated activation of intrinsic cardiac neurons, doing so primarily via AT(2) receptor-dependent mechanisms. These neurohumoral interactions may be fundamental to regulation of neuronal excitability within the intrinsic cardiac nervous system.  相似文献   

11.
Intrinsic neuronal and circuit properties control the responses of large ensembles of neurons by creating spatiotemporal patterns of activity that are used for sensory processing, memory formation, and other cognitive tasks. The modeling of such systems requires computationally efficient single-neuron models capable of displaying realistic response properties. We developed a set of reduced models based on difference equations (map-based models) to simulate the intrinsic dynamics of biological neurons. These phenomenological models were designed to capture the main response properties of specific types of neurons while ensuring realistic model behavior across a sufficient dynamic range of inputs. This approach allows for fast simulations and efficient parameter space analysis of networks containing hundreds of thousands of neurons of different types using a conventional workstation. Drawing on results obtained using large-scale networks of map-based neurons, we discuss spatiotemporal cortical network dynamics as a function of parameters that affect synaptic interactions and intrinsic states of the neurons.  相似文献   

12.
Chronic myocardial infarction (CMI) is associated with remodeling of the ventricle and evokes adaption in the cardiac neurohumoral control systems. To evaluate the remodeling of the intrinsic cardiac nervous system following myocardial infarction, the dorsal descending coronary artery was ligated in the guinea pig heart and the animals were allowed to recover for 7-9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential configuration compared with age-matched controls and sham-operated animals. The intrinsic cardiac neurons from chronic infarcted hearts did demonstrate an increase in evoked action potential (AP) frequency (as determined by the number of APs produced with depolarizing stimuli) and an increase in responses to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP)-induced increases in intrinsic cardiac neuron-evoked AP frequency were similar between control and CMI animals. Immunohistochemical analysis demonstrated a threefold increase in percentage of neurons immunoreactive for neuronal nitric oxide synthase (NOS) in CMI animals compared with control and the additional expression of inducible NOS by some neurons, which was not evident in control animals. Finally, the density of mast cells within the intrinsic cardiac plexus was increased threefold in preparations from CMI animals. These results indicate that CMI induces a differential remodeling of intrinsic cardiac neurons and functional upregulation of neuronal responsiveness to specific neuromodulators.  相似文献   

13.
Neurophysiologists have long been seeking out simple model systems in which to analyse the neuronal mechanisms underlying the organisation of behaviour. The feeding behaviour of molluscs has proved to be one of the most useful simple systems for the analysis of cyclical motor patterns, the interactions of central pattern generating interneurones and the role of sensory inputs in the initiation and maintenance of the behaviour. Considerable progress has been made in one or both of the first two aspects of this research in Lymnaea, Helisoma, Limax, Planorbarius, Pleurobranchaea and Tritonia (for reviews see [3, 7, 8, 15]) and more recently, in Aplysia [39] and Planorbis [1]. The role of mechano- and chemosensory inputs in the organisation of the feeding behaviour was studied in at least twenty molluscan species (for a review see [3]). However, in only less than half of them was the analysis extended to the effect of tactile and chemical inputs on identified neurones in the buccal and cerebral ganglia which contain the feeding circuitry (Aplysia: [12, 22, 36, 41]; Pleurobranchaea: [9, 16, 17]; Tritonia: [2]; Helisona: [21]; Limax: [11, 14, 35]; Helix: [6, 19, 24-26, 32, 38]). In present chapter I would like to review our earlier findings on the processing of mechano- and chemosensory information in the lip nerves and cerebral ganglia of Helix pomatia L. These findings were published in a series of papers between 1982 and 1987 [19, 20, 24-26]. The results reviewed here prepared the way for the development of new lines of research in our laboratory on the plasticity and serotonergic modulation of feeding in this widely used experimental animal [27, 40].  相似文献   

14.
Although intrinsic cardiac neurons display ongoing activity after chronic interruption of extrinsic autonomic inputs to the heart, the effects of decentralization on individual neurons remain unknown. The objective of this study was to determine the effects of chronic (3-4 wk) surgical decentralization on intracellular properties of, and neurotransmission among, neurons contained within the canine intrinsic right atrial ganglionated plexus in vitro. Properties of neurons from decentralized hearts were compared with those of neurons from sham-operated hearts (controls). Two populations of neurons were identified by their firing behavior in response to intracellular current injection. Fifty-nine percent of control neurons and 72% of decentralized neurons were phasic (discharged one action potential on excitation). Forty-one percent of control neurons and 27% of decentralized neurons were accommodating (multiple discharge with decrementing frequency). After chronic decentralization, input resistance of phasic neurons increased, whereas the duration of afterhyperpolarization of accommodating neurons decreased. Postsynaptic responses to interganglionic nerve stimulation were evoked in 89% of control neurons and 83% of decentralized neurons; the majority of these responses involved nicotinic receptors. These results show that, after chronic decentralization, intrinsic cardiac neurons 1) undergo changes in membrane properties that may lead to increased excitability while 2) maintaining synaptic neurotransmission within the intrinsic cardiac ganglionated plexus.  相似文献   

15.
Right ventricular (RV) pacing is now recognized to play a role in the development of heart failure in patients with and without underlying left ventricular (LV) dysfunction. We used the cardiac norepinephrine spillover method to test the hypothesis that RV pacing is associated with cardiac sympathetic activation. We studied 8 patients with normal LV function using temporary right atrial and ventricular pacing wires. All measurements were carried out during a fixed atrial pacing rate. The radiotracer norepinephrine spillover technique was employed to measure total body and cardiac sympathetic activity while changes in LV performance were evaluated with a high-fidelity manometer catheter. Atrioventricular synchronous RV pacing, compared with atrial pacing alone, was associated with a 65% increase in cardiac norepinephrine spillover, an increase in LV end-diastolic pressure, and a reduction in myocardial efficiency. These responses may play a role in the development of heart failure and poor outcomes that are associated with chronic RV pacing.  相似文献   

16.
The heterogeneous paraventricular nucleus (PVN) of birds offers favorable conditions for the analysis of intrinsic, afferent, and efferent connections of neuroendocrine systems. Paraventricular neurons are successfully impregnated with the Golgi-technique. The findings indicate a direct influence of the cerebrospinal fluid (CSF) on the magnocellular neurons that, via their axon terminals in the neural lobe of the pituitary, are also exposed to the hemal milieu. The magnocellular neurons are intermingled with parvocellular elements which may represent local interneurons. A group of parvocellular nerve cells is identified as CSF-contacting neurons. This type of cell forms a basic morphologic component of the avian neuroendocrine apparatus. Immunocytochemical and ultrastructural studies further support the concept of neuronal interactions between parvocellular and magnocellular elements. Moreover, these findings speak in favor of the existence of recurrent collaterals of the magnocellular neurons. Nerve cells giving rise to afferent connections to the PVN are located in the limbic system and autonomic areas of the upper and lower brainstem. Further afferents may originate from the subfornical organ, the organon vasculosum laminae terminalis, the ventral tegmentum, and the area postrema. Via efferent projections, the PVN is connected to the nucleus accumbens, lateral septum, several hypothalamic nuclei, the neural lobe of the pituitary, the organon vasculosum laminae terminalis, the subfornical organ, the pineal organ, the area postrema, the lateral habenular complex, and various autonomic areas of the reticular formation in the upper and lower brainstem and the spinal cord. In conclusion, the PVN may be regarded as an integral component of the neuroendocrine apparatus reciprocally coupled to the limbic system, several circumventricular organs, and various autonomic centers of the brain.  相似文献   

17.
W. Glenn Friesen 《CMAJ》1971,104(10):900-904,922
Increasing the heart rate by a bedside atrial pacing technique was successfully utilized to treat serious cardiac arrhythmia or failure in 13 patients. Nine of these had ventricular arrhythmia refractory to drugs. Seven had evidence of sinus node depression or disease since their sinus pacemaker was below 70 beats per minute under decompensated conditions. In five, coronary artery disease was associated with the bradycardia and in two, digitalis toxicity was related to depression of the intrinsic pacemaker rate. Two patients in the coronary group required implantation of a permanent demand ventricular pacemaker. Hemodynamic studies were performed in seven patients. Only one patient had no increase in cardiac output with pacing rates above his resting rate. The other six patients showed an increase in cardiac output from 22 to 81% at paced rates between 70 and 125/minute. The duration of pacing ranged from one hour to 14 days and averaged five days.  相似文献   

18.
Intrinsic cardiac neurons (ICNs) are crucial cells in the neural regulation of heart rhythm, myocardial contractility, and coronary blood flow. ICNs exhibit diversity in their morphology and neurotransmitters that probably are age-dependent. Therefore, neuroanatomical heart studies have been currently focused on the identification of chemical phenotypes of ICNs to disclose their possible functions in heart neural regulation. Employing whole-mount immunohistochemistry, we examined ICNs from atria of the newborn pigs (Sus scrofa domesticus) as ICNs at this stage of development have never been neurochemically characterized so far. We found that the majority of the examined ICNs (>60%) were of cholinergic phenotype. Biphenotypic neuronal somata (NS), that is, simultaneously positive for two neuronal markers, were also rather common and distributed evenly within the sampled ganglia. Simultaneous positivity for cholinergic and adrenergic neuromarkers was specific in 16.4%, for cholinergic and nitrergic—in 3.5% of the examined NS. Purely either adrenergic or nitrergic ICNs were observed at 13% and 3.1%, correspondingly. Purely adrenergic and nitrergic NS were the most frequent in the ventral left atrial subplexus. Similarly to neuronal phenotype, sizes of NS also varied depending on the atrial region providing insights into their functional implications. Axons, but not NS, positive for classic sensory neuronal markers (vesicular glutamate transporter 2 and calcitonin gene-related peptide) were identified within epicardiac nerves and ganglia. Moreover, a substantial number of ICNs could not be attributed to any phenotype as they were not immunoreactive for antisera used in this study. Numerous dendrites with putative peptidergic and adrenergic contacts on cholinergic NS contributed to neuropil of ganglia. Our observations demonstrate that intrinsic cardiac ganglionated plexus is not fully developed in the newborn pig despite of dense network of neuronal processes and numerous signs of neural contacts within ganglia.  相似文献   

19.
It has been shown that inhaled cigarette smoke activates vagal pulmonary C fibers and rapidly adapting receptors (RARs) in the airways and that nicotine contained in the smoke is primarily responsible. This study was carried out to determine whether nicotine alone can activate pulmonary sensory neurons isolated from rat vagal ganglia; the response of these neurons was determined by fura-2-based ratiometric Ca(2+) imaging. The results showed: 1) Nicotine (10(-4) M, 20 s) evoked a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in 175 of the 522 neurons tested (Delta[Ca(2+)](i) = 142.2 +/- 12.3 nM); the response was reproducible, with a small reduction in peak amplitude in the same neurons when the challenge was repeated 20 min later. 2) A majority (59.7%) of these nicotine-sensitive neurons were also activated by capsaicin (10(-7) M). 3) 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP; 10(-4) M, 20 s), a selective agonist of the neuronal nicotinic acetylcholine receptors (NnAChRs), evoked a pattern of response similar to that of nicotine. 4) The responses to nicotine and DMPP were either totally abrogated or markedly attenuated by hexamethonium (10(-4) M). 5) In anesthetized rats, right atrial bolus injection of nicotine (75-200 mug/kg) evoked an immediate (latency <1-2 s) and intense burst of discharge in 47.8% of the pulmonary C-fiber endings and 28.6% of the RARs tested. In conclusion, nicotine exerts a direct stimulatory effect on vagal pulmonary sensory nerves, and the effect is probably mediated through an activation of the NnAChRs expressed on the membrane of these neurons.  相似文献   

20.
This study was designed to establish whether agents known to modify neuronal ion channels influence the behavior of mammalian intrinsic cardiac neurons in situ and, if so, in a manner consistent with that found previously in vitro. The activity generated by right atrial neurons was recorded extracellularly in varying numbers of anesthetized dogs before and during continuous local arterial infusion of several neuronal ion channel modifying agents. Veratridine (7.5 microM), the specific modifier of Na+-selective channels, increased neuronal activity (95% above control) in 80% of dogs tested (n = 25). The membrane depolarizing agent potassium chloride (40 mM) reduced neuronal activity (43% below control) in 84% of dogs tested (n = 19). The inhibitor of voltage-sensitive K+ channels, tetraethylammonium (10 mM), decreased neuronal activity (42% below control) in 73% of dogs tested (n = 11). The nonspecific potassium channel inhibitor barium chloride (5 mM) excited neurons (47% above control) in 13 of 19 animals tested. Cadmium chloride (200 microM), which inhibits Ca2+-selective channels and Ca2+-dependent K+ channels, increased neuronal activity (65% above control) in 79% of dogs tested (n = 14). The specific L-type Ca2+ channel blocking agent nifedipine (5 microM) reduced neuronal activity (52% blow control in 72% of 11 dogs tested), as did the nonspecific inhibitor of L-type Ca2+ channels, nickel chloride (5 mM) (36% below control in 69% of 13 dogs tested). Each agent induced either excitatory or inhibitory responses, depending on the agent tested. It is concluded that specific ion channels (I(Na), I(CaL), I(Kv), and I(KCa)) that have been associated with intrinsic cardiac neurons in vitro are involved in their capacity to generate action potentials in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号