首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

2.
We have examined the effects of cyclosporin A (CsA) and a series of CsA analogs that bind with decreasing affinity to cyclophilin, to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4; LTC4) mediators of inflammatory reactions from human basophils. CsA (8 to 800 nM) concentration-dependently inhibited (5 to 60%) histamine release from peripheral blood basophils challenged with anti-IgE. CsA was more potent (92.6 +/- 1.8 vs 59.1 +/- 4.5%; p less than 0.001) and, at low concentrations, more effective when the channel-operated influx of Ca2+ was bypassed by the ionophore A23187 (IC40 = 24.1 +/- 3.9 vs 105.5 +/- 22.2 nM; p less than 0.05). CsA had no effect on the release of histamine caused by phorbol myristate and bryostatin 1 that activate different isoforms of protein kinase C. Inhibition of histamine release from basophils challenged with anti-IgE was not abolished by washing (three times) the cells before anti-IgE challenge. CsA also inhibited the de novo synthesis of LTC4 from basophils challenged with anti-IgE. The inhibitory effect of CsA was very rapid, and the drug, added from 1 to 10 min during the reaction, inhibited the ongoing release of histamine caused by anti-IgE and by A23187. The experiments with CsA analogs (CsG, CsC, CsD, and CsH) showed that CsH, which has an extremely low affinity for cyclophilin, has no effect on basophil mediator release. In addition, there is a significant correlation between the concentrations of CsA, G, C, and D that inhibited by 30% the histamine release induced by anti-IgE (r = 0.99; p less than 0.001) and by A23187 (r = 0.87; p less than 0.001) and their affinity for cyclophilin.  相似文献   

3.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

4.
Numbers of circulating basophils are increased in asthmatic subjects, compared to normal subjects. Basophil enriched cell preparations from normal and asthmatic subjects were challenged in vitro with the calcium ionophore A23187, anti-IgE, or opsonized zymosan to study leukotriene C4 formation, histamine release, and prostaglandin D2 formation. No prostaglandin D2 formation by basophils was observed. Furthermore, opsonized zymosan was not capable of inducing any mediator formation or release from basophils. At optimal stimulation conditions no differences were found between basophils from normal and asthmatic subjects concerning A23187 or anti-IgE induced leukotriene C4 formation or histamine release. A23187 and anti-IgE induced leukotriene C4 formation were in the range of 1-20 and 0.6-4.8 pmol/10(6) basophils respectively.  相似文献   

5.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

6.
The ability of hypoxia (PO2 57 Torr) and anoxia (PO2 0 Torr) to induce the release of histamine or sulfidopeptide leukotrienes from dispersed porcine parenchymal lung cells was examined. Spontaneous release of histamine (9.2 +/- 1.3%) was not significantly increased during hypoxia or anoxia, and spontaneous leukotriene release was not detected under any conditions. The release of leukotriene induced by A23187 (78 +/- 11 pmol leukotriene D4 equivalent/10(7) parenchymal lung cells) was unchanged during hypoxia and was significantly reduced (55.4 +/- 7.7% control leukotriene release) during anoxia, whereas A23187-induced histamine release (63.2 +/- 4.2% total cell histamine) was unaffected by reduced oxygenation. Reduction of final buffer pH from 7.4 to 7.0 did not affect mediator release. High-pressure liquid chromatographic analysis of the released leukotrienes revealed a mixture of leukotrienes C4 and D4, with a symmetrical reduction in product during anoxia. Although leukotriene release in response to hypoxia was not demonstrated, the findings do not preclude limited local release of leukotrienes, perhaps in association with increased smooth muscle responsiveness.  相似文献   

7.
Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX greater than forskolin greater than PGE2 greater than isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.  相似文献   

8.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

9.
Basic characteristics of human lung mast cell desensitization   总被引:1,自引:0,他引:1  
Human lung parenchymal mast cells displayed both specific and nonspecific desensitization. The kinetics of both release and desensitization were approximately equal to 3 times faster than human basophils, but a similar relationship between release and desensitization suggests similar biochemistries in basophils and mast cells. Arachidonic acid metabolite (PGD2 and LTC4) release was slower to desensitize (t1/2 of 8 min) than histamine release (t1/2 of 3 min), the ratio of which is similar to the ratio observed in basophils. Ionophore A23187-induced release was unaffected by desensitization to anti-IgE antibody, and calcium-45 uptake was inhibited by desensitization, suggesting that desensitization inhibits the early post-cross-linking "influx" of calcium that is necessary for mediator release in mast cells. In contrast to the above similarities in basophil and mast cell desensitization, mast cell desensitization, unlike that of basophils was not inhibited by diisopropylfluorophosphate.  相似文献   

10.
The pattern of mediators and appearance of cells that stain with alcian blue during human experimental early and late phase allergic reactions suggest that basophils accumulate in nasal secretions within hours of local Ag stimulation. To further explore whether the histamine containing cells that enter the nose after Ag challenge are mast cells or basophils, we studied their functional and phenotypic characteristics. Approximately 24 h after intranasal Ag provocation of subjects with allergic rhinitis, nasal lavage was performed, and the cells were isolated for degranulation studies, analysis of surface Ag, and viability. The average histamine content per alcian blue staining cell was 0.78 +/- 0.2 pg (n = 7), similar to that reported for peripheral blood basophils. Nasal cells were challenged in vitro with anti-IgE, ragweed Amb a I, and FMLP and their responses were compared to those of peripheral blood basophils isolated simultaneously from the same donors. Nasal leukocytes released histamine maximally at 0.1 micrograms/ml of anti-IgE (35.8 +/- 7.8%, n = 7) and responded to FMLP (25.4 +/- 9.9%, n = 7). The response of the cells to ragweed Amb a I and anti-IgE was attenuated compared to peripheral blood basophils. Anti-IgE-induced histamine release was calcium and temperature dependent. Dual color immunofluorescence and flow cytometric analysis of the recovered nasal cells coexpressed CD18, a leukocyte marker not expressed by mast cells. The nasal cells consistently had high levels of spontaneous histamine release (19.5 +/- 2.0%, n = 22). The viability of all cells, assessed by erythrosin B dye exclusion, was 70 +/- 2% (n = 15). However, the viability of IgE-bearing cells was only 28.3 +/- 5.7% (n = 4). The characteristics of histamine release and the nature of the cellular surface markers provide functional proof that the histamine-containing cells accumulating after nasal Ag challenge are basophils and not mast cells.  相似文献   

11.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

12.
The effect of lysophosphatidylserine on immunological histamine release has been studied in rat peritoneal mast cells actively sensitized with horse serum and in human basophils challenged with anti-IgE. In contrast to other lysophospholipids, lysophosphatidylserine enhances the immunological histamine release in rat mast cells. The effect shows the kinetics of a saturable process with an apparent Km for lysophosphatidylserine of 0.26 microM. A similar Km value (0.21 microM) is found when measuring the non-immunological histamine release activated by lysophosphatidylserine plus nerve growth factor. A comparison with phosphatidylserine shows that a half-maximal response to lysophosphatidylserine occurs at a concentration 4-times lower. In addition, the magnitude of the response is higher. At variance with rat mast cells, lysophosphatidylserine does not influence the histamine release elicited by immunological and non-immunological stimuli in human basophils. The histamine secretion in these cells is instead affected by a calcium ionophore or tetradecanoylphorbolacetate, a compound producing activation of protein kinase C.  相似文献   

13.
The gene product of the steel locus of the mouse represents a growth factor for murine mast cells and a ligand for the c-kit proto-oncogene receptor, a member of the tyrosine kinase receptor class of oncogenes (for review, see O. N. Witte. 1990. Cell 63:5). We have studied the effect of the human recombinant c-kit receptor ligand stem cell factor (rhSCF) on the release of inflammatory mediators from human skin mast cells and peripheral blood basophils and compared its activity to that of rhIL-3, rhSCF (1 ng/ml to 1 microgram/ml) activated the release of histamine and PGD2 from mast cells isolated from human skin. Analysis by digital video microscopy indicated that purified human skin mast cells (84 +/- 5% pure) responded to rhSCF (0.1 to 1 microgram/ml) challenge with a rapid, sustained rise in intracellular Ca2+ levels that was accompanied by secretion of histamine. A brief preincubation (10 min) of mast cells with rhSCF (0.1 pg/ml to 1 ng/ml) significantly enhanced (100 +/- 35%) the release of histamine induced by anti-IgE (3 micrograms/ml), but was much less effective on IgE-mediated release of PGD2. In contrast, a short term incubation with rhSCF did not potentiate the secretion of histamine activated by substance P (5 microM). A 24-h incubation of mast cells with rhSCF did not affect the release of mediators induced by anti-IgE (3 micrograms/ml), probably due to receptor desensitization, rhSCF (1 ng/ml to 3 micrograms/ml) neither caused release of histamine or leukotriene C4 (LTC4) release from leukocytes of 14 donors, nor induced a rise in intracellular Ca2+ levels in purified (greater than 70%) basophils. Brief preincubation (10 min) of leukocytes with rhSCF (1 ng/ml to 3 micrograms/ml) caused an enhancement (69 +/- 11%) of anti-IgE-induced release of histamine that was significant at concentrations as low as 3 ng/ml (p less than 0.05), whereas it appeared less effective in potentiating IgE-mediated LTC4 release. In contrast, a prolonged incubation (24 h) with rhSCF (0.1 pg/ml to 100 ng/ml) did not enhance the release of histamine or LTC4 induced by anti-IgE (0.1 microgram/ml), whereas rhIL-3 (3 ng/ml) significantly potentiated the release of both mediators.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Arachidonic acid metabolism in purified human lung mast cells   总被引:9,自引:0,他引:9  
Arachidonic acid metabolism has been explored in preparations of purified human lung mast cells prelabeled with arachidonic acid (AA). Cells were of 83 to greater than 96% purity, and each experiment was performed with four to six different preparations of mast cells. After overnight culture of the purified cells in the presence of 3H-AA, followed by extensive washing in buffer, mast cell uptake of labeled AA was 61.4 +/- 14.8 pmol/10(6) cells with 21 +/- 2.4% of the label in phospholipids, 73 +/- 2.1% in neutral lipids, and 3.6 +/- 0.8% as free AA. Analysis of the distribution of radioactivity in phospholipid classes revealed 51.4 +/- 5.5% of the label in phosphatidylcholine, 14.5 +/- 1.6% in phosphatidylinositol, 12.0 +/- 3.0% in phosphatidylethanolamine, and 9.1 +/- 2.4% in sphingomyelin, with the rest in other phospholipid classes. Challenge of these cells with an optimal concentration of anti-IgE led to the release of 20 +/- 4.0% of cellular histamine and to a reduction in labeled phosphatidylcholine and phosphatidylinositol to 75.5 +/- 8.8% and 84.2 +/- 4.5% of the control levels, respectively, (p less than 0.05); anti-IgE challenge produced no statistically significant change in the quantities of other labeled phospholipids. Activation of human lung mast cells with anti-IgE led to the release of 3.4 +/- 1.3% of the cellular 3H as AA and AA metabolites (1.5 +/- 0.6% as unmetabolized AA) in conjunction with 16 +/- 4.3% of the cellular histamine. Although activation of human lung mast cells with ionophore A23187 caused 70 +/- 1.1% histamine release, a similar quantity of AA and AA metabolites was released (a total of 4.0 +/- 0.8% with 2.3 +/- 1.5% as unmetabolized AA). Analysis of the released metabolites by liquid scintillation spectrometry after high performance liquid chromatography separation showed that approximately equal amounts of metabolites were produced after mast cell activation with anti-IgE and ionophore A23187. In this series of experiments approximately equal amounts of cyclooxygenase and lipoxygenase products were generated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Human basophils release approximately 90 pmol of LTC4/micrograms histamine when challenged with anti-IgE antibody, but donor to donor variation produces a 1000-fold range of response. There is little conversion to LTC4 to LTE4 in purified preparations of basophils, but conversion to LTE4 does occur if cell densities are high during incubation. Like histamine release, leukotriene release is calcium and temperature dependent and is complete in 20 min, with a t1/2 of approximately 8 min. The process of desensitization also ablates leukotriene release, but there is a distinct two phase process where leukotriene release is enhanced after 5 min of desensitization, whereas histamine release is inhibited and total ablation of leukotriene release occurs only after 45 min of desensitization. Human basophils respond well to stimulation with covalently cross-linked trimeric IgE myeloma but respond poorly to dimeric IgE. This differential sensitivity to the two forms of cross-linked IgE is most exaggerated in the context of leukotriene release, where dimer is 30-fold less efficacious and 100- to 1000-fold less potent than trimer on some donors' basophils. This dichotomy of response is also observed in antigen-challenged cells, where the bivalent hapten, BPO2, also poorly induces leukotriene release in accord with the fact that it predominantly induces dimeric cross-links of penicillin-specific IgE. Anti-IgE dose-response curves reveal a region of dimeric cross-link dominance that may explain the peculiar differences observed in pharmacologic studies of basophil release induced with antigen vs anti-IgE. In addition, there is a continuum of "releasability," where some donors' basophils display no response (histamine or leukotriene release) to dimeric IgE, and others' basophils are essentially equally responsive to both dimeric and trimeric IgE. This releasability difference manifests itself by conferring increased sensitivity to antigenic challenge in those donors' basophils capable of responding to dimeric cross-links such that these donors' basophils are capable of releasing histamine upon antigen challenge while possessing only 50 molecules of cell surface antigen-specific IgE; other dimer-insensitive donors' basophils require 6 to 10-fold greater IgE densities for equal histamine release.  相似文献   

16.
We have shown that fluids collected from antigen-challenged skin blisters during the late phase reaction cause the release of substantial amounts of histamine (means = 42%, n = 14) from human basophils in vitro. Control fluids collected either during the immediate phase or from an unchallenged blister released less than or equal to 10% histamine from both basophils and lung mast cells. Late phase blister fluids induced low levels of histamine release from human lung cells (means = 11%, n = 4) that were slightly but not significantly greater than levels induced by control blister fluids. The characteristics of basophil release were similar to IgE-mediated stimuli in dose dependence, calcium and temperature requirements, and kinetics. The IgE dependence of the late phase blister fluid was demonstrated by desensitization of the basophils to anti-IgE, which obviated the response to anti-IgE and blister fluid but did not affect a non-IgE-mediated stimulus. Removal of the cell surface IgE with lactic acid also abolished the response to both anti-IgE and late phase blister fluid. Incubation of the "stripped" cells with serum containing IgE myeloma restored the response to anti-IgE but failed to affect response to late phase blister fluid. The characteristics of release obtained with this factor closely resemble those of an IgE-dependent histamine releasing factor from cultured macrophages previously described by our group.  相似文献   

17.
Basophil releasability implies that, in addition to the surface density of IgE molecules, biochemical events determine the capacity to release chemical mediators in response to activating stimuli. We studied the IgE (anti-IgE)-mediated and non-IgE-mediated (f-met peptide and the Ca2+ ionophore A23187) releasability of human basophils obtained from 14 monozygotic (MZ) (ages 25.7 +/- 13.3 yr; mean +/- SDM) and 13 dizygotic (DZ) twin pairs (ages 20.4 +/- 9.9 yr). A significant intrapair correlation coefficient of the maximal percent of anti-IgE-induced histamine release was found in the MZ, whereas no significant correlation was found in the DZ. The mean intrapair variance of anti-IgE-induced histamine release in MZ (VMZ) and in DZ (VDZ) gave an F value equal to 3.84 (p less than 0.01) and a heritability (H) index of 0.74. Similar findings were obtained with respect to the sensitivity to a standard concentration (10(-1) micrograms/ml) of anti-IgE. No correlation between serum IgE level and anti-IgE-induced histamine release was found in either MZ or DZ. A significant intrapair correlation coefficient of f-met peptide-induced histamine release was found in both the MZ and the DZ. The difference between MZ and DZ was not significant. The VMZ and the VDZ of the f-met peptide-induced histamine release gave an F value of 1.52 (NS) and an H value of 0.34. The intrapair correlation coefficient of A23187-induced release was significant in MZ and not significant in DZ. The mean intrapair variance of A23187-induced histamine release gave an F value of 2.33 (NS) and an H index of 0.57. Similar findings were obtained by using suboptimal (3 X 10(-1) micrograms/ml) concentrations of A23187. There was no correlation between the sensitivity of basophils to release in response to anti-IgE and their response to f-met peptide or A23187, in either the MZ or the DZ. We conclude that the ability of basophils to respond to anti-IgE and A23187 is influenced by genetic factors.  相似文献   

18.
To understand the biochemical events that occur in the airways after rhinovirus (RV) infection, we developed for the first time a model in which the cell lines from human mast cells (HMC-1) and basophils (KU812) can be infected with RV14, a major group RV. Viral infection was confirmed by demonstrating that viral titers in culture supernatants, and RV RNA increased with time. RV14 infection alone and a combination of PMA plus calcium ionophore A23187, did not increase histamine production by these cells, although IgE plus anti-IgE increased the histamine production. However, histamine content in the supernatants increased in response to PMA plus A23187, or IgE plus anti-IgE after RV14 infection. PMA plus A23187 or IgE plus anti-IgE induced the production of IL-8 and GM-CSF in supernatants of HMC-1 cells and IL-4 and IL-6 in supernatants of KU812 cells. RV14 infection further increased the production of the cytokines, whereas RV14 infection alone did not alter the production of the cytokines by these cells. An Ab to ICAM-1 inhibited RV14 infection of the cells and decreased the production of cytokines and histamine after RV14 infection. RV14 infection enhanced the increases in intracellular calcium concentration and activation of NF-kappaB by PMA plus A23187 in the cells. These findings suggest that RV14 infection may prime the cytokine and histamine production from mast cells and basophils and may cause airway inflammation in asthma.  相似文献   

19.
The immunoregulant FK-506 potently inhibits particular calcium-associated signal transduction events that occur early during T-lymphocyte activation and during IgE receptor-mediated exocytosis in mast cells. FK-506 binds to a growing family of receptors termed FK-506-binding proteins (FKBPs), the most abundant being a 12-kDa cytosolic receptor, FKBP12. To date, there is no formal evidence proving that FKBP12 is the sole receptor mediating the immunosuppressive effects or toxic side effects of FK-506. Using gel filtration chromatography as an assay for novel FK-506-binding proteins, we identified FK-506 binding activities in extracts prepared from calf brain and from JURKAT cells. Both of these new activities comigrated with apparent molecular masses of 110 kDa. However, further characterization of both binding activities revealed that the two are not identical. The 110-kDa activity observed in brain extracts appears to be the FKBP12.FK-506.calcineurin (CaN) complex previously reported (Liu, J., Farmer, J., Lane, W., Friedman, J., Weissman, I., and Schreiber, S. (1991) Cell 66, 807-815) while the 110 kDa activity observed in JURKAT cells is a novel FK-506-binding protein. Our characterization of the FKBP12.FK-506.CaN complex reveals a dependence upon calmodulin (CaM) for formation of the complex and demonstrates that the peptidyl-prolyl cis-trans isomerase (PPIase) activity of FKBP12 is not required for binding of FKBP12.FK-506 to CaN or for inhibition of CaN phosphatase activity. The novel FK-506-binding protein in JURKAT cells has been purified to homogeneity, migrates with an apparent mass of 51 kDa on denaturing gels, and has been termed FKBP51. Like FKBP12, FKBP51 has PPIase activity, but, unlike FKBP12.FK-506, FKBP51.FK-506 does not complex with or inhibit the phosphatase activity of, CaN. These results indicate that complex formation with CaN may not be a general property of the FKBPs. Peptide sequencing reveals that FKBP51 may be similar, if not identical, to hsp56, a component of non-transformed steroid receptors.  相似文献   

20.
Cytocentrifuge preparations of enzymatically dispersed human lung parenchymal mast cells were examined by light microscopy after fixation in either Mota's basic lead acetate or 10% neutral buffered formalin followed by toluidine blue staining at pH 0.5. Fixation in Mota's basic lead acetate allowed detection of all mast cells. However, after formalin fixation only 10.8 +/- 1.3%, range 4.7 to 17%, n = 8 remained detectable (i.e., formalin "resistant"). Therefore, the vast majority of human lung mast cells lose their metachromatic staining after formalin fixation (i.e., are formalin "sensitive"). Mast cells were then separated on the basis of diameter by countercurrent elutriation and on the basis of density by discontinuous Percoll gradients. Histochemically distinct populations of mast cell types emerged in all lungs studied. The proportion of formalin-resistant mast cells increased as a function of diameter: less than 5% at diameters of less than or equal to 11 mu and densities less than or equal to 1.063 g/ml, to 30 to 40% in cells of diameters greater than or equal to 16 mu and densities greater than or equal to 1.100 g/ml. Maximum anti-IgE challenge of nearly homogeneous formalin-sensitive mast cells (94.3 +/- 2.1% purity, n = 6) caused the generation of both leukotriene C4 (64.6 +/- 26.4 pg/mast cell) and PGD2 (114.8 +/- 37.5 pg/mast cell). Six- to eight-fold enrichment of formalin-resistant mast cells did not significantly alter the histamine release response or profiles of arachidonate metabolites. Similar results were obtained for the nonimmunologic stimulus ionophore A23187. We conclude that two histochemically distinct subpopulations, of mast cells are present in human lung suspensions. Although formalin-sensitive cells account for almost 90% of lung mast cells, formalin-resistant cells are separable by their large diameters and higher densities. Both subtypes show similar histamine release responses and arachidonate oxidation profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号