首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular mechanisms underlying inducible cobalt and nickel resistance of a bacterial strain isolated from a Cuban serpentine deposit were investigated. This strain C-1 was assigned to Serratia marcescens by 16S rDNA analysis and DNA/DNA hybridization. Genes involved in metal resistance were identified by transposon mutagenesis followed by selection for cobalt- and nickel-sensitive derivatives. The transposon insertion causing the highest decrease in metal resistance was located in the ncrABC determinant. The predicted NcrA product was a NreB ortholog of the major facilitator protein superfamily and central for cobalt/nickel resistance in S. marcescens strain C-1. NcrA also mediated metal resistance in Escherichia coli and caused decreased accumulation of Co(II) and Ni(II) in this heterologous host. NcrB may be a regulatory protein. NcrC was a protein of the nickel–cobalt transport (NiCoT) protein family and necessary for full metal resistance in E. coli, but only when NcrA was also present. Without NcrA, NcrC caused a slight decrease in metal resistance and mediated increased accumulation of Ni(II) and Co(II). Because the cytoplasmic metal concentration can be assumed to be the result of a flow equilibrium of uptake and efflux processes, this interplay between metal uptake system NcrC and metal efflux system NcrA may contribute to nickel and cobalt resistance in this bacterium.  相似文献   

3.
4.
5.
In vitro, the sigma(s) subunit of RNA polymerase (RNAP), RpoS, recognizes nearly identical -35 and -10 promoter consensus sequences as the vegetative sigma70. In vivo, promoter selectivity of RNAP holoenzyme containing either sigma(s) (Esigma(s)) or sigma70 (Esigma70) seems to be achieved by the differential ability of the two holoenzymes to tolerate deviations from the promoter consensus sequence. In this study, we suggest that many natural sigma(s)-dependent promoters possess a -35 element, a feature that has been considered as not conserved among sigma(s)-dependent promoters. These -35 hexamers are mostly non-optimally spaced from the -10 region, but nevertheless functional. A +/- 2 bp deviation from the optimal spacer length of 17 bp or the complete absence of a -35 consensus sequence decreases overall promoter activity, but at the same time favours Esigma(s) in its competition with Esigma70 for promoter recognition. On the other hand, the reduction of promoter activity due to shifting of the -35 element can be counterbalanced by an activity-stimulating feature such as A/T-richness of the spacer region without compromising Esigma(s) selectivity. Based on mutational analysis of sigma(s), we suggest a role of regions 2.5 and 4 of sigma(s) in sensing sub-optimally located -35 elements.  相似文献   

6.
7.
8.
9.
Previous work has shown that the base sequence of the DNA segment immediately upstream of the -10 hexamer at bacterial promoters (the extended -10 element) can make a significant contribution to promoter strength. Guided by recently published structural information, we used alanine scanning and suppression mutagenesis of Region 2.4 and Region 3.0 of the Escherichia coli RNA polymerase sigma(70) subunit to identify amino acid sidechains that play a role in recognition of this element. Our study shows that changes in these regions of the sigma(70) subunit can affect the recognition of different extended -10 element sequences.  相似文献   

10.
11.
12.
The bacterium Myxococcus xanthus undergoes multicellular development during times of nutritional stress and uses extracellular signals to coordinate cell behavior. C-signal affects gene expression late in development, including that of Omega4499, an operon identified by insertion of Tn5 lac into the M. xanthus chromosome. The Omega4499 promoter region has several sequences in common with those found previously to be important for expression of other C-signal-dependent promoters. To determine if these sequences are important for Omega4499 promoter activity, the effects of mutations on expression of a downstream reporter gene were tested in M. xanthus. Although the promoter resembles those recognized by Escherichia coli sigma(54), mutational analysis implied that a sigma(70)-type sigma factor likely recognizes the promoter. A 7-bp sequence known as a C box and a 5-bp element located 6 bp upstream of the C box have been shown to be important for expression of other C-signal-dependent promoters. The Omega4499 promoter region has C boxes centered at -33 and -55 bp, with 5-bp elements located 7 and 8 bp upstream, respectively. A multiple-base-pair mutation in any of these sequences reduced Omega4499 promoter activity more than twofold. Single base-pair mutations in the C box centered at -33 bp yielded a different pattern of effects on expression than similar mutations in other C boxes, indicating that each functions somewhat differently. An element from about -81 to -77 bp exerted a twofold positive effect on expression but did not appear to be responsible for the C-signal dependence of the Omega4499 promoter. Mutations in sigD and sigE, which are genes that encode sigma factors, reduced expression from the Omega4499 promoter. The results provide further insight into the regulation of C-signal-dependent genes, demonstrating both shared and unique properties among the promoter regions so far examined.  相似文献   

13.
14.
15.
16.
17.
18.
To investigate the evolutionary relationships between the aph(3') genes from different plasmids, the nucleotide sequence of the aph(3') gene from the E. coli R plasmid was determined and compared with the known aph(3') genes of Tn903 and Tn4352. Three point mutations in the structural part of the cloned aph(3') gene caused amino acid changes in the enzyme molecule at positions 19, 27 and 48 beginning from the start codon. The structural part of the gene was followed by two stop codons and a long DNA region containing no nucleotide sequences homologous to the sequences of Tn903 or Tn4352. Both the cloned aph(3') gene and Tn4352 were limited on the left by the spacer sequence and the insertion sequence IS176. Twenty one base pairs deletion abolished the -35 sequence of the promoter suggested for the aph(3') gene of Tn4352 and resulted in formation of a fusion promoter utilizing the -35 box of IS176 and the -10 box of the aph(3') gene. The distance between the -35 and -10 sequences changed from 18 to 17 bp. Changes in the cloned aph(3') gene and the flanking DNA regions resulted in formation of a new promoter and loss of the right IS176 element.  相似文献   

19.
20.
The gene encoding the Lon protease of Erwinia amylovora has been cloned by complementation of an Escherichia coli lon mutant. Analysis of the determined nucleotide sequence of the lon gene revealed extensive homology to the nucleotide sequences of cloned lon genes from E. coli, Myxococcus xanthus, and Bacillus brevis. The predicted amino acid sequence of the E. amylovora Lon protease was 94, 59, and 54% identical to the predicted amino acid sequences of the Lon proteases of E. coli, M. xanthus, and B. brevis, respectively. The -10 and -35 promoter regions of the cloned lon gene had extensive homology to the respective consensus sequences of E. coli heat shock promoters. Promoter mapping of the lon gene located the start site 7 bases downstream of the -10 region. Cloning of the lon promoter upstream of a cat reporter gene demonstrated that expression of the E. amylovora lon gene was inducible by a heat shock. This is the first demonstration of a heat shock-regulated gene in E. amylovora. Site-directed mutagenesis of the -10 region of the lon promoter confirmed that the heat shock expression of the E. amylovora lon gene may be mediated by a sigma 32-like factor. Insertional inactivation of the E. amylovora chromosomal lon gene confirmed that the lon gene was not essential for either vegetative growth or infection of apple seedlings. E. amylovora lon mutants had increased sensitivity to UV irradiation and elevated levels of extracellular polysaccharide, suggesting comparable roles for the Lon proteases in both E. amylovora and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号