首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sterol composition of C. ellipsoidea was markedly changed when this alga was grown in the presence of 1 μg/g triparanol. Triparanol appears to inhibit the removal of 14α-methyl group, the second alkylation at C-24, Δ7-reductase, and Δ8 → Δ7-isomerase. The effect of triparanol in Chlorella is much more diversified than the specific effect originally assigned to it in animals.  相似文献   

2.
Ozone Inhibition of Photosynthesis in Chlorella sorokiniana   总被引:2,自引:0,他引:2       下载免费PDF全文
Exposure of Chlorella sorokiniana (07-11-05) to ozone inhibits photosynthesis. In this study, the effects of ozone on O2 evolution and fluorescence yields are used to characterize this inhibition. At an ozone dose of about 3 micromoles delivered to 2 × 109 cells, the photosynthetic rate of the cells is inhibited 50%, as indicated by a decrease in bicarbonate-stimulated O2 evolution (control rate, 1.4 ± 0.3 × 10−15 moles per cell per minute).  相似文献   

3.
When Moniiinia fructigena was treated with S–1358 at a concentration of 10 μm, both quality and quantity of digitonin-precipitable sterols were markedly altered. The amount of ergosterol which is a major sterol in the control culture was reduced by S–1358 and the concomitant accumulation of obtusifoliol (one of 4α-methyl sterols) and 24-methylenedihy-drolanosterol (one of 4,4-dimethyl sterols) was observed. The time course study of acetate-U-14C incorporation into the digitonin-precipitable sterols revealed that 4α-methyl sterols accumulated slowly in the treated culture, while 4,4-dimethyl sterols accumulated rapidly. The accumulation of the sterols containing “extra1” methyl groups suggests that S–1358 blocks demethylation reactions in the conversion from lanosterol to ergosterol in M. fructigena.  相似文献   

4.
An oxygen-tolerant strain (OTS) of Chlorella sorokiniana was isolated by growing and continuously subculturing the oxygen-sensitive strain (OSS) in growth medium bubbled continuously with 95% O(2)-5% CO(2). Under these conditions, 6 to 8 hr were required before the OSS began to grow. The growth rates of the OTS and the OSS were the same when grown in an atmosphere of air-5% CO(2), and the growth rate of the OTS was the same when aerated with 95% O(2)-5% CO(2) and air-5% CO(2). The adaptive process was irreversible since serial transfers of the OTS grown with air-5% CO(2) did not alter the ability of the OTS to grow with 95% O(2)-5% CO(2). Inasmuch as photosynthesis in the OTS and the OSS was inhibited to a similar extent by oxygen and the adaptive process occurred heterotrophically in the absence of photosynthesis, it was concluded that the adaptive process was independent of photosynthesis. Morphological differences between the OTS and the OSS are presented and discussed with respect to the adaptive process.  相似文献   

5.
[This corrects the article on p. 140 in vol. 17.].  相似文献   

6.
The replication of plus-strand RNA viruses depends on subcellular membranes. Recent genome-wide screens have revealed that the sterol biosynthesis genes ERG25 and ERG4 affected the replication of Tomato bushy stunt virus (TBSV) in a yeast model host. To further our understanding of the role of sterols in TBSV replication, we demonstrate that the downregulation of ERG25 or the inhibition of the activity of Erg25p with an inhibitor (6-amino-2-n-pentylthiobenzothiazole; APB) leads to a 3- to 5-fold reduction in TBSV replication in yeast. In addition, the sterol biosynthesis inhibitor lovastatin reduced TBSV replication by 4-fold, confirming the importance of sterols in viral replication. We also show reduced stability for the p92pol viral replication protein as well as a decrease in the in vitro activity of the tombusvirus replicase when isolated from APB-treated yeast. Moreover, APB treatment inhibits TBSV RNA accumulation in plant protoplasts and in Nicotiana benthamiana leaves. The inhibitory effect of APB on TBSV replication can be complemented by exogenous stigmasterol, the main plant sterol, suggesting that sterols are required for TBSV replication. The silencing of SMO1 and SMO2 genes, which are orthologs of ERG25, in N. benthamiana reduced TBSV RNA accumulation but had a lesser inhibitory effect on the unrelated Tobacco mosaic virus, suggesting that various viruses show different levels of dependence on sterol biosynthesis for their replication.Plus-stranded RNA [(+)RNA] viruses usurp various intracellular/organellar membranes for their replication. These cellular membranes are thought to facilitate the building of viral factories, promote a high concentration of membrane-bound viral proteins, and provide protection against cellular nucleases and proteases (1, 12, 35, 44). The membrane lipids and proteins may serve as scaffolds for targeting the viral replication proteins or for the assembly of the viral replicase complex. The subcellular membrane also may provide critical lipid or protein cofactors to activate/modulate the function of the viral replicase. Indeed, the formation of spherules, consisting of lipid membranes bended inward and viral replication proteins as well as recruited host proteins, has been demonstrated for several (+)RNA viruses (20, 30, 48). These virus-induced spherules serve as sites of viral replication. Importantly, (+)RNA viruses also induce membrane proliferation that requires new lipid biosynthesis. Therefore, it is not surprising that several genome-wide screens for the identification of host factors affecting (+)RNA virus replication unraveled lipid biosynthesis/metabolism genes (8, 23, 38, 50). However, in spite of these intensive efforts, understanding the roles of various lipids and lipid biosynthesis enzymes and pathways in (+)RNA virus replication is limited.Tomato bushy stunt virus (TBSV) is among the most advanced model systems regarding the identification of host factors affecting (+)RNA virus replication (32). Among the five proteins encoded by the TBSV genome, only the p33 replication cofactor and the p92pol RNA-dependent RNA polymerase (RdRp) are essential for TBSV RNA replication (55). p33 and p92pol are integral membrane proteins, and they are present on the cytosolic surface of the peroxisomes, the site of replicase complex formation and viral RNA replication (30, 42). Electron microscopic images of cells actively replicating tombusviruses have revealed the extensive remodeling of membranes and indicated active lipid biosynthesis (30, 34).Additional support for the critical roles of various lipids in TBSV replication comes from a list of 14 host genes involved in lipid biosynthesis/metabolism, which affected tombusvirus replication and recombination based on systematic genome-wide screens in yeast, a model host. These screens covered 95% of the host genes (16, 38, 50, 51). The 14 identified host genes involved in lipid biosynthesis/metabolism included 8 genes affecting phospholipid biosynthesis, 4 genes affecting fatty acid biosynthesis/metabolism, and 2 genes affecting ergosterol synthesis. These findings suggest that these lipids likely are involved, directly or indirectly, in TBSV replication in yeast.To further understand the roles of cellular membranes, lipids, and host factors in viral (+)RNA replication, we analyzed the importance of sterol biosynthesis in tombusvirus replication. Sterols are ubiquitous and essential membrane components in all eukaryotes, affecting many membrane functions. Sterols regulate membrane rigidity, fluidity, and permeability by interacting with other lipids and proteins within the membranes (4, 5). They also are important for the organization of detergent-resistant microdomains, called lipid rafts (45). The sterol biosynthesis differs in several steps in animals, fungi, and plants, but the removal of two methyl groups at the C-4 position is critical and rate limiting. The C-4 demethylation steps are performed by SMO1 (sterol4α-methyl-oxidase) and SMO2 in plants and by the orthologous ERG25 gene in yeast (10). Accordingly, erg25 mutant yeast accumulates 4,4-dimethylzymosterol, an intermediate in the sterol biosynthesis pathway (3). However, sterol molecules become functional structural components of membranes only after the removal of the two methyl groups at C-4. Therefore, ERG25 is an essential gene for yeast growth.Our previous genome-wide screens for factors affecting tombusvirus replication have identified two sterol synthesis genes, ERG25 and ERG4, that participate in different steps in the sterol biosynthesis pathway (11). In this work, we further characterized the importance of ERG25 in TBSV replication in yeast. The downregulation or pharmacological inhibition of ERG25 in yeast led to a 4- to 5-fold decreased TBSV RNA accumulation. The in vitro activity of the tombusvirus replicase was reduced when isolated from the yeast cells described above. We also found that the stability of p92pol viral replication protein decreased by 3-fold in yeast treated with a chemical inhibitor of ERG25. The inhibition of sterol biosynthesis in plant protoplasts or in plant leaves with a chemical inhibitor or the silencing of SMO1 and SMO2 genes also resulted in a reduction in TBSV RNA accumulation, supporting the roles of sterols in tombusvirus replication in plants as well.  相似文献   

7.
Incorporation of DL-[2-14C]mevalonic acid ([2-14C]MVA) into4-desmethylsterols in Nicotiana tabacum cv. Turkish Samson seedlingswas inhibited by SK&F 7997-A3,1 SK&F 7732-A3, AY 9944,and the plant growth retardant, Amo 1618. Reductions in 4-desmethylsterol levels resulted from treatmentwith AY 9944 and Amo 1618, but not the SK&F compounds. Amo1618 and SK&F 7997-A3 both significantly reduced the specificactivity of each of the four major 4-desmethylsterols examined.Although SK&F 7732-A3 reduced the specific activity of campesterol,and AY 9944 reduced the specific activity of stigmasterol, neitherhad an effect on the specific activity of ß-sitosterol. Stem elongation of tobacco seedlings was retarded by SK&F7997-A3, AY 9944, and SK&F 7732-A3, particularly the former,and the retarded plants thus produced were morphologically indistinguishablefrom the Amo 1618-treated plants. Application of exogenous stigmasterol,or GA3, to the chemically-retarded plants resulted in a reversalof stem growth retardation.  相似文献   

8.
Heath RL 《Plant physiology》1979,64(2):224-227
It was found that the transport system for glucose (as measured by deoxyglucose uptake) in the high temperature strain of Chlorella (strain 07-11-05 or C. sorokiniana) was constitutive and the rate of uptake did not increase upon incubation of autotrophically grown cells with either deoxyglucose or glucose. The uptake obeyed Michaelis-Menten type kinetics with a concentration of 200 micromolar for half-saturation. The maximum rate of uptake was nearly 10 times faster per cell (at 38 C) than that reported for any other Chlorella. This rapid accumulation of deoxyglucose causes the passive efflux to become significant compared to the pump-driven influx and nonlinear uptake appears even after only 3 to 4 minutes.  相似文献   

9.
《Plant Science Letters》1976,6(2):97-102
Tris induces K+ leakage from Chlorella sorokiniana under conditions of high pH and low osmolarity, in the absence of external K+. Using a cation specific electrode, two phases of K+ efflux were observed, an initial exponential leakage rate (0–30 min) and a steady-state leakage rate (30–200 min). The initial exponential efflux of K+ was inhibited by 0.6 M mannitol or 10 mM CaCl2 and did not obey Michaelis-Menten kinetics with respect to Tris concentration. The steady-state efflux was not inhibited by mannitol, CO, or N2, required only 3 mM CaCl2 for inhibition, and obeyed Michaelis-Menten kinetics with an apparent half-saturation constant of 6 mM.  相似文献   

10.
Chlorella sorokiniana H-84, which has toleranceto high temperatures and high concentrations ofCO2, has been isolated from a hot spring inJapan. Large-scale culturing of C. sorokinianawas carried out in air containing 10% CO2.Analysis of the biomass shows that protein, carbohydrate and lipids comprised 68.5, 11.9 and10.0% of dry matter, respectively. The totalcarotenoids comprised 0.69% dry matter. The luteinand -carotene contents were 4300 and 600 gg-1 dry weight, respectively. The-tocopherol content was 112 g g-1 dry weight. These carotenoids and -tocopherolare known to possess radical scavenging activity.Two fractions with radical scavenging activity wereisolated from the aqueous extract of C.sorokiniana H-84. The extract showed several singlepeaks by reversed phase HPLC analysis and two of themhad molecular weights of 710 and 1286, respectively.  相似文献   

11.
12.
AIMS: To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. METHODS AND RESULTS: Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. CONCLUSIONS: It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.  相似文献   

13.
Growth of Chlorella sorokiniana at Hyperbaric Oxygen Pressures   总被引:3,自引:1,他引:2       下载免费PDF全文
The growth rate of Chlorella sorokiniana decreased in a linear fashion as the partial pressure of oxygen was increased from 711 to 1,478 mm of Hg. Under two atmospheres of oxygen pressure, growth ceased after 10 to 12 hr. This cessation of growth was not due to any permanent injury, as growth resumed when oxygen partial pressure was reduced to ambient levels. The inhibition occurred under both autotrophic and heterotrophic growth conditions and was not accompanied by an increase in cell size. The results indicated that the tolerance of Chlorella cells to elevated oxygen pressures was not an absolute immunity, and that inhibition of growth at very high oxygen pressures cannot be accounted for by an inhibition of photosynthesis alone.  相似文献   

14.
Regulation of sterol synthesis was studied in Solanum species.A significant negative correlation was found between sterolcontent and rate of sterol synthesis from (1-14C) acetate inplant organs of Solanum nigrum and cell cultures of S. dulcamara.Exogenous cholesterol significantly inhibited the rate of sterolsynthesis from (14C) acetate in cell cultures of S. dulcamarawithout affecting synthesis from (3H) mevalonate. Exogenouscholesterol stimulated the rate of total lipid synthesis fromboth (14C) acetate and (3H) mevalonate. Thus, cholesterol inhibitedconversion of acetate to mevalonate; this is taken as evidenceof a negative feedback control on sterol synthesis. Key words: Feedback control, Phytosterol biosynthesis, Plant cell culture, Solanum species  相似文献   

15.
16.
After x-ray irradiation, 13 mutants of Chlorella sorokiniana incapable of using NO3 as N source were isolated using a pinpoint method. Using immunoprecipitation and Western blot assays, no nitrate reductase was found in five strains while in eight mutants the enzyme was detected. The latter strains contained different patterns of nitrate reductase partial reactions. All isolates were of the nia-type as indicated by the inducibility of purine hydroxylase I and by complementation of nitrate reductase activity in the Neurospora crassa mutant Nit-1. A restoration of NADP-nitrate reductase in Nit-1 was also obtained with NH4+-grown cells indicating that Mo-cofactor is constitutive in Chlorella. Complementation experiments among the Chlorella mutants resulted in restoration of NADH-nitrate reductase activity. The characteristics of some of the Chlorella mutants are discussed in view of an improper orientation of Mo-cofactor in the residual nitrate reductase protein.  相似文献   

17.
The unicellular algae Chlorella sorokiniana was used as a model system to investigate the interaction of ozone with plant cell membranes. Ozone induces K+ leakage from Chlorella sorokiniana similar to the electrolytic loss observed from many higher plants under stressful conditions. The kinetics of this leakage indicate that ozone initially interacts reversibly (within sec) with sites on membranes allowing a passive efflux of K+. This efflux ceases within minutes after the ozone stress is removed. This return to normal efflux is very temperature dependent. High intracellular osmolarity seems to be an important criterion of susceptibility to ozone injury in this model system, since rates of ozone-induced K+ leakage are less when the external osmotic potential is decreased by suspension of the cells in mannitol. Cell interaction with ozone is further complicated by a saturating-type dependence of the K+ efflux upon ozone concentration within the medium.  相似文献   

18.
A method is described to achieve density labeling of proteins in unicellular algae by using 13CO2. This is a satisfactory procedure especially for work on nitrogen metabolism. The increase in activity of glutamine synthetase (EC 6.3.1.2.) and glutamate synthase (EC 1.4.7.1.) in Chlorella sorokiniana mediated by a dark/light shift and by nitrogen starvation were investigated. Using the method of density labeling and isopycnic centrifugation, we demonstrated that the increase in enzyme activity after a dark/light shift is based on activation rather than de novo synthesis. The increase in enzyme activity after transfer to nitrogen-deficient medium is based both on activation and de novo synthesis.  相似文献   

19.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

20.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号