首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methanogenic bacteria were isolated from landfill sites in the United Kingdom. Strains of Methanobacterium formicicum, Methanosarcina barkeri, several different immunotypes of Methanobacterium bryantii, and a coccoid methanogen distinct from the reference immunotypes were identified.  相似文献   

2.
大豆内生细菌的分离及根腐病拮抗菌的筛选鉴定   总被引:11,自引:0,他引:11  
内生细菌存在于健康植物体内,一些内生细菌具有促生长、抗病和固氮等生物学功能.本项研究采用化学药剂表面灭菌方法从黑龙江省大豆品种合丰25的根、茎、叶和种子中分离到大量内生细菌,其种群数量在根部最多,为3.4×103CFU/g,在叶部次之,为2.8×103CFU/g,在茎部和种子中最少,为2.9×102 CFU/g和1.4×102CFU/g.从121株内生细菌中筛选到31株对大豆根腐病菌Fusarium oxysporum f. sp.soybean具有较强抑制作用的拮抗内生细菌,其中菌株TF28抑菌谱广,抑菌率高,对不同植物的病原菌F. oxysporum的抑菌率为80.2%~96.7%.经形态、生理生化和16S rRNA鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens).  相似文献   

3.
Two biosurfactant-producing Pseudomonas aeruginosa strains (KISR C1 and KISR B1) were isolated from Kuwaiti oil-contaminated soil, which resulted from the Gulf War. The optimum environmental conditions that supported the growth and surfactant production of both isolates were examined. The two isolates differed in their biosurfactant-stimu-lating carbon source, nitrogen concentration, and the pH of the medium. C-1 isolate produced two types of rhamnolipids with a final concentration of 98.4?g/l after spiking the nitrogen-limited medium with 10?mg/ml olive oil. The other isolate (B-1) produced only one type of rhamnolipid (5.9?g/l) after spiking the medium with crude oil. The biosurfactant produced by this strain was found to be very effective in the emulsifica-tion of crude oil. The result suggests that this isolate can potentially be used to enhance bioremediation of oil-contamination and enhanced oil recovery.  相似文献   

4.
Cellulolytic aerobic bacteria were isolated from activated sludge systems. Of the media tested for enumeration, only filter paper media gave reliable counts. Five isolates were studied further for characterization. It was found that one strain (DK) belonged to the genus Cellulomonas. The other four strains expressed similarity to the genus Pseudomonas. The different characteristics that were studied, however, do not permit them to be identified with any recognized species. Based on certain characters we believe that they are alcaligenes-like pseudomonads.  相似文献   

5.
A bacteriological examination was done on samples of water and sediment from three localities in the Baltic. The highest numbers of bacteria were recovered from areas subjected to pollution. The isolates included members of the family Enterobacteria-ceae, the genus Pseudomonas and strains of Aeromonas hydrophila, Alteromonas putrefaciens and some Gram positive bacteria. It is suggested tentatively that H2S production in the black sediments was caused by Alt. putrefaciens. None of the isolates had an absolute requirement for NaCl, although all of them were salt-tolerant to varying degrees, and most were able to grow aerobically at salinities comparable with those found in seawater. Isolates belonging to the family Enterobacteriaceae were, however, unable to grow anaerobically under comparable conditions. Freshwater strains of several genera of the family Enterobacteriaceae and of Aeromonas hydrophila and Aer. sobria displayed salt tolerance identical with that of the Baltic isolates. One strain each of Escherichia coli, Klebsiella pneumoniae and Yersinia enterocolitica survived well during three weeks at 17°C in artificial seawater lacking both carbon and nitrogen sources. These results suggest the need for a re-evaluation of the persistence of potentially pathogenic bacteria in the sea.  相似文献   

6.
7.
8.
Most of the bacteria isolated from water and sediment samples from a locality off the west coast of Sweden had an absolute requirement for Na+. On the basis of phenotypic characterization and determination of DNA base composition, the strains could be assigned to the genera Beneckea, Alteromonas and Pseudomonas. Apart from a group of sulphide-forming alteromonads, none of the isolates appeared to be identical with organisms described previously.  相似文献   

9.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.  相似文献   

10.
The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1–V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.  相似文献   

11.
In order to investigate the mechanism of microbial growth at elevated temperatures, it was tried to isolate different thermophilic microorganisms from wide origins, such as soils, composts, manure piles and hot spring waters. As the result, 5 strains of extremely thermophilic bacteria, the maximum, the optimum and the minimum temperatures for growth of which were 80, 70~75, and 40°C, respectively, were isolated from Izu-Atagawa hot spring and Beppu hot springs. These bacteria were gram-negative, yellow-pigmented, non-motile and non-sporulating rods of 0.5~0.7 μ in diameter and 2~5 μ in length. They were heterotrophs requiring several amino acids (such as glutamate, aspartate, et al.) and vitamins (such as biotin, folic acid and p-aminobenzoic acid) and grew well at neutral to slight alkali pH. The content of GC pairs of DNAs from the 5 strains was 69~70%, and this seemed to be one of the highest values in bacteria so far known. Among the 5 strains, strain AT–62 was named as Thermus flavus sp. n. AT–62 from its morphological and physiological characteristics. Comparison between Thermus flavus and other extremely thermophilic bacteria as Thermus aquaticus and Flavobacterium thermophilum is described and discussed in reference to classification of extremely thermophilic bacteria.  相似文献   

12.
Four potential polyester-degrading bacterial strains were isolated from compost soils in Thailand. These bacteria exhibited strong degradation activity for polyester biodegradable plastics, such as polylactic acid (PLA), polycaprolactone (PCL), poly-(butylene succinate) (PBS) and polybutylene succinate-co-adipate (PBSA) as substrates. The strains, classified according to phenotypic characteristics and 16S rDNA sequence, belonging to the genera Actinomadura, Streptomyces and Laceyella, demonstrated the best polyester- degrading activities. All strains utilized polyesters as a carbon source, and yeast extract with ammonium sulphate was utilized as a nitrogen source for enzyme production. Optimization for polyester-degrading enzyme production by Actinomadura sp. S14, Actinomadura sp. TF1, Streptomyces sp. APL3 and Laceyella sp. TP4 revealed the highest polyester-degrading activity in culture broth when 1% (w/v) PCL (18 U/mL), 0.5% (w/v) PLA (22.3 U/mL), 1% (w/v) PBS (19.4 U/mL) and 0.5% (w/v) PBSA (6.3 U/mL) were used as carbon sources, respectively. All strains exhibited the highest depolymerase activities between pH 6.0–8.0 and temperature 40–60°C. Partial nucleotides of the polyester depolymerase gene from strain S14, TF1 and APL3 were studied. We determined the amino acids making up the depolymerase enzymes had a highly conserved pentapeptide catalytic triad (Gly-His-Ser-Met-Gly), which has been shown to be part of the esterase-lipase superfamily (serine hydrolase).  相似文献   

13.
Five bacterial strains were isolated from polluted soils capable of degrading 2,2-dichloropropionate. In crude extracts, dehalogenase activity against haloacetates and longer-chained 2-haloalkanoic acids could be detected. Results from activity staining indicated that all bacterial strains expressed a single dehalogenase. In further biochemical characterization, two types of D,L-specific 2-haloalkanoic acid dehalogenases were described, which are different from each other not only in molecular weight and electrophoretic mobility, but also in sensitivity towards thiol reagents. Dehalogenases of these strains have been shown to be inducible and are catalyzing halide hydrolysis with inversion of product configuration. Received: 5 July 1996 / Accepted: 1 August 1996  相似文献   

14.
New phenol degrading bacteria with high biodegradation activity and high tolerance were isolated as Burkholderia cepacia PW3 and Pseudomonas aeruginosa AT2. Both isolates could grow aerobically on phenol as a sole carbon source even at 3 g/l. The whole-cell kinetic properties for phenol degradation by strains PW3 and AT2 showed a Vmax of 0.321 and 0.253 mg/l/min/(mg protein), respectively. The metabolic pathways for phenol biodegradation in both strains were assigned to the meta-cleavage activity of catechol 2,3-dioxygenase.  相似文献   

15.
From biopsies taken from the vaginal tract of dairy cattle a virus was isolated in embryonated eggs. This virus was cytopathogenic to chick kidney and bovine embryo cell cultures with the formation of plaques on the former. Antisera for Infectious Pustular Vulvovaginitis, Enteric Cytopathogenic Bovine Orphan, Chick Embryo Lethal Orphan, Newcastle disease, Infectious Bronchitis, and Laryngotracheitis failed to neutralize the virus.  相似文献   

16.
Phenol is a man-made as well as a naturally occurring aromatic compound and an important intermediate in the biodegradation of natural and industrial aromatic compounds. Whereas many microorganisms that are capable of aerobic phenol degradation have been isolated, only a few phenol-degrading anaerobic organisms have been described to date. In this study, three novel nitrate-reducing microorganisms that are capable of using phenol as a sole source of carbon were isolated and characterized. Phenol-degrading denitrifying pure cultures were obtained by enrichment culture from anaerobic sediments obtained from three different geographic locations, the East River in New York, N.Y., a Florida orange grove, and a rain forest in Costa Rica. The three strains were shown to be different from each other based on physiologic and metabolic properties. Even though analysis of membrane fatty acids did not result in identification of the organisms, the fatty acid profiles were found to be similar to those of Azoarcus species. Sequence analysis of 16S ribosomal DNA also indicated that the phenol-degrading isolates were closely related to members of the genus Azoarcus. The results of this study add three new members to the genus Azoarcus, which previously comprised only nitrogen-fixing species associated with plant roots and denitrifying toluene degraders.  相似文献   

17.
氯苯降解菌的筛选鉴定及降解特性研究   总被引:2,自引:0,他引:2  
本文采集化工厂排污口的污泥样品, 在含有氯苯为唯一碳源的基本培养基中, 先后分离筛选出7株能够降解氯苯的微生物菌株。通过对分离菌株的16S rRNA基因序列进行分析, 发现其中5株细菌分别属于放线菌目的考克氏菌属(KD139)、红球菌属(KD140和KD142)和节杆菌属(KD230和KD232), 1株细菌属于杆菌目的芽胞杆菌d属(KD178), 另外1株细菌属于黄色单孢菌目的寡食单胞菌属(KD237); 同时我们构建了系统进化树, 确定分离菌株的相对进化地位。本文还利用气相色谱方法, 对分离菌株降解氯苯的能力进行了初步分析, 其中寡食单胞菌KD237降解氯苯能力最高, 24 h内氯苯分解率达60.78%。  相似文献   

18.
Bacterial screenings from solar saltern in Sfax (Tunisia) lead to the isolation of 40 moderately halophilic bacteria which were able to grow optimally in media with 5–15% of salt. These isolates were phylogenetically characterized using 16S rRNA gene sequencing. Two groups were identified including 36 strains of Gamma-Proteobacteria (90%) and 4 strains of Firmicutes (10%). The Gamma-Proteobacteria group consisted of several subgroups of the Halomonadaceae (52.5%), the Vibrionaceae (15%), the Alteromonadaceae (10%), the Idiomarinaceae (7.5%), and the Alcanivoracaceae (5%). Moreover, three novel species: 183ZD08, 191ZA02, and 191ZA09 were found, show <97% sequence similarity of the 16S rRNA sequences while compared to previously published cultivated species. Most of these strains (70%) were able to produce hydrolases: amylases, proteases, phosphatases, and DNAases. Over the isolates, 60% produced phosphatases, 15.0% proteases, 12.5% amylases and DNAases equally. This study showed that the solar saltern of Sfax is an optimal environment for halophilic bacterial growth, where diverse viable bacterial communities are available and may have many industrial applications.  相似文献   

19.
Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur.  相似文献   

20.
Methods for isolation of fecal 7α-dehydroxylating bacteria are presented. A total of 219 strains were isolated from feces of healthy humans, and their ability to 7-dehydroxylate cholic, chenodeoxycholic, and ursodeoxycholic acids were examined. Of all the isolates, 14 strains were found to be capable of eliminating the hydroxy group at C-7α and/or C-7β. All the isolates were strictly anaerobic, Gram-positive rods. Thirteen isolates were non-sporeforming bacteria showing certain saccharolytic properties with the production of acid and gas from dextrose, and were catalase-positive but indole-, lecithinase-, urease- and oxidase-negative. Based on the data available at present, it was concluded that they could be regarded as members of the genus Eubacterium. One strain, however was identified as Clostridium sordellii. The isolated strains capable of 7α-dehydroxylating cholic acid and chenodeoxycholic acid were also able to oxidize the hydroxy group at C-7α. Nine strains (10, 12, 36S, M-2, M-17, M-18, Y-98, Y-1112, and Y-1113) of the 7α-dehydroxylating bacteria were confirmed to have 7β-dehydroxylation ability, but five strains (O-51, O-52, O-71, O-72, and Y-67) could not transform ursodeoxycholic acid to lithocholic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号