首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shigella flexneri is a Gram-negative pathogen that invades and causes inflammatory destruction of the human colonic epithelium, thus leading to bloody diarrhea and dysentery. A type III secretion system that delivers effector proteins into target eukaryotic cells is largely responsible for cell and tissue invasion. However, the respective role of this invasive phenotype and of lipid A, the endotoxin of the Shigella LPS, in eliciting the inflammatory cascade that leads to rupture and destruction of the epithelial barrier, was unknown. We investigated whether genetic detoxification of lipid A would cause significant alteration in pathogenicity. We showed that S. flexneri has two functional msbB genes, one carried by the chromosome (msbB1) and the other by the virulence plasmid (msbB2), the products of which act in complement to produce full acyl-oxy-acylation of the myristate at the 3' position of the lipid A glucosamine disaccharide. A mutant in which both the msbB1 and msbB2 genes have been inactivated was impaired in its capacity to cause TNF-alpha production by human monocytes and to cause rupture and inflammatory destruction of the epithelial barrier in the rabbit ligated intestinal loop model of shigellosis, indicating that lipid A plays a significant role in aggravating inflammation that eventually destroys the intestinal barrier. In addition, neutralization of TNF-alpha during invasion by the wild-type strain strongly impaired its ability to cause rupture and inflammatory destruction of the epithelial lining, thus indicating that TNF-alpha is a major effector of epithelial destruction by Shigella.  相似文献   

2.
Lipid A, a potent endotoxin which can cause septic shock, anchors lipopolysaccharide (LPS) into the outer leaflet of the outer membrane of gram-negative bacteria. MsbB acylates (KDO)(2)-(lauroyl)-lipid IV-A with myristate during lipid A biosynthesis. Reports of knockouts of the msbB gene describe effects on virulence but describe no evidence of growth defects in Escherichia coli K-12 or Salmonella. Our data confirm the general lack of growth defects in msbB E. coli K-12. In contrast, msbB Salmonella enterica serovar Typhimurium exhibits marked sensitivity to galactose-MacConkey and 6 mM EGTA media. At 37 degrees C in Luria-Bertani (LB) broth, msbB Salmonella cells elongate, form bulges, and grow slowly. msbB Salmonella grow well on LB-no salt (LB-0) agar; however, under specific shaking conditions in LB-0 broth, many msbB Salmonella cells lyse during exponential growth and a fraction of the cells form filaments. msbB Salmonella grow with a near-wild-type growth rate in MSB (LB-0 containing Mg(2+) and Ca(2+)) broth (23 to 42 degrees C). Extragenic compensatory mutations, which partially suppress the growth defects, spontaneously occur at high frequency, and mutants can be isolated on media selective for faster growing derivatives. One of the suppressor mutations maps at 19.8 centisomes and is a recessive IS10 insertional mutation in somA, a gene of unknown function which corresponds to ybjX in E. coli. In addition, random Tn10 mutagenesis carried out in an unsuppressed msbB strain produced a set of Tn10 inserts, not in msbB or somA, that correlate with different suppressor phenotypes. Thus, insertional mutations, in somA and other genes, can suppress the msbB phenotype.  相似文献   

3.
Previous work established that the htrB gene of Escherichia coli is required for growth in rich media at temperatures above 32.5 degrees C but not at lower temperatures. In an effort to determine the functional role of the htrB gene product, we have isolated a multicopy suppressor of htrB, called msbB. The msbB gene has been mapped to 40.5 min on the E. coli genetic map, in a 12- to 15-kb gap of the genomic library made by Kohara et al. (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). Mapping data show that the order of genes in the region is eda-edd-zwf-pykA-msbB. The msbB gene codes for a protein of 37,410 Da whose amino acid sequence is similar to that of HtrB and, like HtrB, the protein is very basic in nature. The similarity of the HtrB and MsbB proteins could indicate that they play functionally similar roles. Mutational analysis of msbB shows that the gene is not essential for E. coli growth; however, the htrB msbB double mutant exhibits a unique morphological phenotype at 30 degrees C not seen with either of the single mutants. Analysis of both msbB and htrB mutants shows that these bacteria are resistant to four times more deoxycholate than wild-type bacteria but not to other hydrophobic substances. The addition of quaternary ammonium compounds rescues the temperature-sensitive phenotype of htrB bacteria, and this rescue is abolished by the simultaneous addition of Mg2+ or Ca2+. These results suggest that MsbB and HtrB play an important role in outer membrane structure and/or function.  相似文献   

4.
Photorhabdus luminescens is a symbiont of entomopathogenic nematodes. Analysis of the genome sequence of this organism revealed a homologue of PhoP-PhoQ, a two-component system associated with virulence in intracellular bacterial pathogens. This organism was shown to respond to the availability of environmental magnesium. A mutant with a knockout mutation in the regulatory component of this system (phoP) had no obvious growth defect. It was, however, more motile and more sensitive to antimicrobial peptides than its wild-type parent. Remarkably, the mutation eliminated virulence in an insect model. No insect mortality was observed after injection of a large number of the phoP bacteria, while very small amounts of parental cells killed insect larvae in less than 48 h. At the molecular level, the PhoPQ system mediated Mg(2+)-dependent modifications in lipopolysaccharides and controlled a locus (pbgPE) required for incorporation of 4-aminoarabinose into lipid A. Mg(2+)-regulated gene expression of pbgP1 was absent in the mutant and was restored when phoPQ was complemented in trans. This finding highlights the essential role played by PhoPQ in the virulence of an entomopathogen.  相似文献   

5.
Salmonella typhimurium, causing mouse typhoid, infects hosts such as macrophage cells, and proliferates in intracellular vacuoles causing infected cells to trigger numerous genes to respond against the infection. In this study, we tried to identify such genes in RAW264.7 cells by using the PCR screening method with degenerate primers. Fourteen genes were found to be differentially expressed after a 4 h infection in which the expression of 8 genes increased while expression of the others decreased. Most of the genes were involved in proinflammatory responses such as cytokines production and cell death. The mutation in msbB gene encoding the myristoyl transferase in lipid A of lipopolysaccharide (LPS) resulted in much lower toxicity to the inoculated animals. We compared the expression of the identified genes in wild-type and msbB-mutated S. typhimurium infections and found that Lyzs encoding lysozyme type M was differentially expressed. This gene is quite likely to be related to bacterial survival in the host cells.  相似文献   

6.
7.
8.
9.
10.
11.
The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.  相似文献   

12.
13.
Summary We developed a model system for detecting and assaying the circular forms of T-DNA which may be generated in Agrobacterium by intramolecular recombination between the 25 bp border repeats of T-DNA. We demonstrated using this system that the DNA region flanked by the 25 bp direct repeats is in fact circularized by recombination between these repeats in cells of Agrobacterium cocultured with tobacco protoplasts. Furthermore, quantitative analysis of the recombination revealed the following: (1) the recombination is also induced when the agrobacterial cells are incubated in protoplast-free conditioned medium prepared by filtering the protoplast culture. The conditioned medium is effective, even after it has been heated at 100°C. (2) The DNA region encompassing the virulence region of the Ti-plasmid is required for recombination. (3) The recombination takes place only between 25 bp repeats with the same orientation. On the basis of these results, we conclude that the circular form of T-DNA is generated by homologous recombination between the border repeats which is mediated by gene product(s) encoded by the virulence region of the Ti-plasmid. Either the recombination itself, or the expression of the virulence gene(s) responsible for the recombination, is induced by diffusible and heatstable factor(s) secreted by plant cells.  相似文献   

14.
The control of virulence gene expression in the human pathogen Staphylococcus aureus is under the partial control of the two-component quorum-sensing system encoded by genes of the agr locus. The product of the agrA gene has been shown by amino acid sequence similarity to be the putative response regulator; however, binding of AgrA to promoters under its control has not yet been demonstrated. In this study, we isolated and purified soluble AgrA by expression under osmotic shock conditions and ion-exchange chromatography. Purified AgrA showed high-affinity binding to the RNAIII-agr intergenic region by electrophoretic mobility shift assays. Binding was localized by DNase I protection assays to a pair of direct repeats in the P2 and P3 promoter regions of the agr locus. We found that this binding was enhanced by the addition of the small phosphoryl donor, acetyl phosphate. The difference in binding affinity between these two promoters was found to result from a 2-bp difference between the downstream direct repeats of the P2 and P3 sites. Mutation of these base pairs in the P3 site to match those found in the P2 site increased the affinity of AgrA for the P3 site relative to that for the P2 site. These results are consistent with the function of AgrA as a response regulator with recognition sites in the promoter regions of RNAIII and the agr locus.  相似文献   

15.

Background  

Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS), which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations.  相似文献   

16.
17.
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.  相似文献   

18.
Shigellosis is a diarrheal disease caused by the gram-negative bacterium Shigella flexneri. Following ingestion of the bacterium, S. flexneri interferes with innate immunity, establishes an infection within the human colon, and initiates an inflammatory response that results in destruction of the tissue lining the gut. Examination of host cell factors required for S. flexneri pathogenesis in vivo has proven difficult due to limited host susceptibility. Here we report the development of a pathogenesis system that involves the use of Caenorhabditis elegans as a model organism to study S. flexneri virulence determinants and host molecules required for pathogenesis. We show that S. flexneri-mediated killing of C. elegans correlates with bacterial accumulation in the intestinal tract of the animal. The S. flexneri virulence plasmid, which encodes a type III secretory system as well as various virulence determinants crucial for pathogenesis in mammalian systems, was found to be required for maximal C. elegans killing. Additionally, we demonstrate that ABL-1, the C. elegans homolog of the mammalian c-Abl nonreceptor tyrosine kinase ABL1, is required for S. flexneri pathogenesis in nematodes. These data demonstrate the feasibility of using C. elegans to study S. flexneri pathogenesis in vivo and provide insight into host factors that contribute to S. flexneri pathogenesis.  相似文献   

19.
~~Screening and identification of Shigella flexneri 2a virulence-related genes induced after invasion of epithelial cells1. Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., Wang, J., Liu, H., Yang, J., Yang, P., Zhang, X., Zhang, J., Yang, G, Wu, H., Qu, D., Dong, J., Sun, L., Xue, Y, Zhao, A., Gao, Y., Zhu, J., Kan, B., Ding, K.. Chen, S., Cheng, H., Yao, Z., He, B., Chen, R., Ma, D., Qiang, B., Wen, Y, Hou, Y., Yu, J., Genome sequence of Shigella flexneri 2…  相似文献   

20.
Peptidoglycan deacetylases protect the Gram-positive bacteria cell wall from host lysozymes by deacetylating peptidoglycan. Sequence analysis of the genome of Shigella flexneri predicts a putative polysaccharide deacetylase encoded by the plasmidic gene orf185, renamed here SfpgdA. We demonstrated a peptidoglycan deacetylase (PGD) activity with the purified SfPgdA in vitro. To investigate the role SfPgdA in virulence, we constructed a SfpgdA mutant and studied its phenotype in vitro. The mutant showed an increased sensitivity to lysozyme compared to the parental strain. Moreover, the mutant was rapidly killed by polymorphonuclear neutrophils (PMNs). Specific substitution of histidines residues 120 and 125, located within the PGD catalytic domain, by phenylalanine abolished SfPgdA function. SfPgdA expression is controlled by PhoP. Mutation of phoP increases sensitivity to lysozyme compared to the SfpgdA mutant. Here, we confirmed that SfPgdA expression is enhanced under low magnesium concentration and not produced by the phoP mutant. Ectopic expression of SfPgdA in the phoP mutant restored lysozyme resistance and parental bacterial persistence within PMNs. Together our results indicate that PG deacetylation mechanism likely contributes to Shigella persistence by subverting detection by the host immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号