首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi) is quickly emerging as a vital component of genome organization, gene regulation, and immunity in Drosophila and other species. Previous studies have suggested that, as a whole, genes involved in RNAi are under intense positive selection in Drosophila melanogaster. Here, we characterize the extent and patterns of adaptive evolution in 23 known Drosophila RNAi genes, both within D. melanogaster and across the Drosophila phylogeny. We find strong evidence for recurrent protein-coding adaptation at a large number of RNAi genes, particularly those involved in antiviral immunity and defense against transposable elements. We identify specific functional domains involved in direct protein-RNA interactions as particular hotspots of recurrent adaptation in multiple RNAi genes, suggesting that targeted coadaptive arms races may be a general feature of RNAi evolution. Our observations suggest a predictive model of how selective pressures generated by evolutionary arms race scenarios may affect multiple genes across protein interaction networks and other biochemical pathways.  相似文献   

2.
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a "twisted abdomen phenotype," in which the abdomen is twisted 30-60 degrees , similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.  相似文献   

3.
4.
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known.  相似文献   

5.
6.
Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Here, we have performed a microscopy-based genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes) and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1) nine are required for centriole duplication, (2) 11 are required for centrosome maturation, (3) nine are required for both functions, and (4) three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn) can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.  相似文献   

7.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

8.
Using the Drosophila melanogaster S2 cell line, stably expressing a cloned muscarinic acetylcholine receptor (AChR), DM1, we have applied gene silencing by double-stranded RNA interference (RNAi) to knock down gene products involved in DM1-mediated calcium signalling. We have shown that RNAi knock down of either the inositol 1,4,5-trisphosphate receptor (Ins(1,4,5)P(3)R), or the SERCA calcium pump in the S2-DM1 cells blocks the increase in intracellular calcium concentration ([Ca(2+)](i)) resulting from activation of the DM1 receptor by 100 microM carbamylcholine (CCh). When RNAi designed to knock down the ryanodine receptor (RyR) was tested, there was no change in the calcium increase detected in response to CCh, consistent with a failure to detect RyRs in S2-DM1 cells using RT-PCR. A combination of RNAi and calcium imaging has provided a direct demonstration of key roles for the Ins(1,4,5)P(3)R and the SERCA pump in the response to DM1 receptor activation.Thus, we show that silencing of individual genes by RNAi in a well characterised Drosophila S2 cell line offers experimental opportunities for cell-signalling studies. Future investigations with RNAi libraries taking full advantage of the wealth of new information available from sequencing the Drosophila genome, may help identify novel components of cell-signalling pathways and functionally linked gene products.  相似文献   

9.
利用果蝇模型研究人类心脏早期发育的分子机理(英文)   总被引:2,自引:0,他引:2  
近年来 ,果蝇心脏特化的遗传机制已初步研究清楚 ,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性 ,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模式。为此目的 ,我们采用P转座子和EMS诱变技术建立了约 3 0 0 0个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选 ,我们检出 2 0 0余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究 ,证明这些基因表现RNAi的突变表型 ,该类突变表型与基因突变时表现的表型相似 ,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果 ,我们从果蝇心脏侯选基因中初步克隆和鉴定了 5 0个人类同源基因 ,其中 2 0个是新基因。Northen印迹分析表明 ,一部分人类基因在心脏组织中有表达 ,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前 ,我们正在建立转基因果蝇 ,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症 ,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

10.
Loss of muscle mass via protein degradation is an important clinical problem but we know little of how muscle protein degradation is regulated genetically. To gain insight our labs developed C. elegans into a model for understanding the regulation of muscle protein degradation. Past studies uncovered novel functional roles for genes affecting muscle and/or involved in signalling in other cells or tissues. Here we examine most of the genes previously identified as the sites of mutations affecting muscle for novel roles in regulating degradation. We evaluate genomic (RNAi knockdown) approaches and combine them with our established genetic (mutant) and pharmacologic (drugs) approaches to examine these 159 genes. We find that RNAi usually recapitulates both organismal and sub-cellular mutant phenotypes but RNAi, unlike mutants, can frequently be used acutely to study gene function solely in differentiated muscle. In the majority of cases where RNAi does not produce organismal level phenotypes, sub-cellular defects can be detected; disrupted proteostasis is most commonly observed. We identify 48 genes in which mutation or RNAi knockdown causes excessive protein degradation; myofibrillar and/or mitochondrial morphologies are also disrupted in 19 of these 48 cases. These 48 genes appear to act via at least three sub-networks to control bulk degradation of protein in muscle cytosol. Attachment to the extracellular matrix regulates degradation via unidentified proteases and affects myofibrillar and mitochondrial morphology. Growth factor imbalance and calcium overload promote lysosome based degradation whereas calcium deficit promotes proteasome based degradation, in both cases myofibrillar and mitochondrial morphologies are largely unaffected. Our results provide a framework for effectively using RNAi to identify and functionally cluster novel regulators of degradation. This clustering allows prioritization of candidate genes/pathways for future mechanistic studies.  相似文献   

11.
12.
The templates of innate immunity have ancient origins. Thus, such model animals as the fruit fly, Drosophila melanogaster, can be used to identify gene products that also play a key role in the innate immunity in mammals. We have used oligonucleotide microarrays to identify genes that are responsive to gram-negative bacteria in Drosophila macrophage-like S2 cells. In total, 53 genes were induced by greater than threefold in response to Escherichia coli. The induction of all these genes was peptidoglycan recognition protein LC (PGRP-LC) dependent. Twenty-two genes including 10 of the most strongly induced genes are also known to be up-regulated by septic injury in vivo. Importantly, we identified 31 genes that are not known to respond to bacterial challenge. We carried out targeted dsRNA treatments to assess the functional importance of these gene products for microbial recognition, phagocytosis and antimicrobial peptide release in Drosophila S2 cells in vitro. RNAi targeting three of these genes, CG7097, CG15678 and beta-Tubulin 60D, caused altered antimicrobial peptide release in vitro. Our results indicate that the JNK pathway is essential for normal antimicrobial peptide release in Drosophila in vitro.  相似文献   

13.
In Drosophila, two features of small interfering RNA (siRNA) structure--5' phosphates and 3' hydroxyls--are reported to be essential for RNA interference (RNAi). Here, we show that as in Drosophila, a 5' phosphate is required for siRNA function in human HeLa cells. In contrast, we find no evidence in flies or humans for a role in RNAi for the siRNA 3' hydroxyl group. Our in vitro data suggest that in both flies and mammals, each siRNA guides endonucleolytic cleavage of the target RNA at a single site. We conclude that the underlying mechanism of RNAi is conserved between flies and mammals and that RNA-dependent RNA polymerases are not required for RNAi in these organisms.  相似文献   

14.
We have used double-stranded RNA-mediated interference (RNAi) to study Drosophila cytokinesis. We show that double-stranded RNAs for anillin, acGAP, pavarotti, rho1, pebble, spaghetti squash, syntaxin1A, and twinstar all disrupt cytokinesis in S2 tissue culture cells, causing gene-specific phenotypes. Our phenotypic analyses identify genes required for different aspects of cytokinesis, such as central spindle formation, actin accumulation at the cell equator, contractile ring assembly or disassembly, and membrane behavior. Moreover, the cytological phenotypes elicited by RNAi reveal simultaneous disruption of multiple aspects of cytokinesis. These phenotypes suggest interactions between central spindle microtubules, the actin-based contractile ring, and the plasma membrane, and lead us to propose that the central spindle and the contractile ring are interdependent structures. Finally, our results indicate that RNAi in S2 cells is a highly efficient method to detect cytokinetic genes, and predict that genome-wide studies using this method will permit identification of the majority of genes involved in Drosophila mitotic cytokinesis.  相似文献   

15.
16.
In vertebrates, mutations in Protein O-mannosyltransferase1 (POMT1) or POMT2 are associated with muscular dystrophy due to a requirement for O-linked mannose glycans on the Dystroglycan (Dg) protein. In this study we examine larval body wall muscles of Drosophila mutant for Dg, or RNA interference knockdown for Dg and find defects in muscle attachment, altered muscle contraction, and a change in muscle membrane resistance. To determine if POMTs are required for Dg function in Drosophila, we examine larvae mutant for genes encoding POMT1 or POMT2. Larvae mutant for either POMT, or doubly mutant for both, show muscle attachment and muscle contraction phenotypes identical to those associated with reduced Dg function, consistent with a requirement for O-linked mannose on Drosophila Dg. Together these data establish a central role for Dg in maintaining integrity in Drosophila larval muscles and demonstrate the importance of glycosylation to Dg function in Drosophila. This study opens the possibility of using Drosophila to investigate muscular dystrophy.  相似文献   

17.
The fruitfly Drosophila melanogaster is well established as a model system in the study of human neurodegenerative diseases. Utilizing RNAi, we have carried out a high-throughput screen for modifiers of aggregate formation in Drosophila larval CNS-derived cells expressing mutant human Huntingtin exon 1 fused to EGFP with an expanded polyglutamine repeat (62Q). 7200 genes, encompassing around 50% of the Drosophila genome, were screened, resulting in the identification of 404 candidates that either suppress or enhance aggregation. These candidates were subjected to secondary screening in normal length (18Q)-expressing cells and pruned to remove dsRNAs with greater than 10 off-target effects (OTEs). De novo RNAi probes were designed and synthesized for the remaining 68 candidates. Following a tertiary round of screening, 21 high confidence candidates were analyzed in vivo for their ability to modify mutant Huntingtin-induced eye degeneration and brain aggregation. We have established useful models for the study of human HD using the fly, and through our RNAi screen, we have identified new modifiers of mutant human Huntingtin aggregation and aggregate formation in the brain. Newly identified modifiers including genes related to nuclear transport, nucleotide processes, and signaling, may be involved in polyglutamine aggregate formation and Huntington disease cascades.  相似文献   

18.
19.
Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of approximately 90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells.  相似文献   

20.
Lentivirus-delivered stable gene silencing by RNAi in primary cells   总被引:40,自引:0,他引:40       下载免费PDF全文
Genome-wide genetic approaches have proven useful for examining pathways of biological significance in model organisms such as Saccharomyces cerevisiae, Drosophila melanogastor, and Caenorhabditis elegans, but similar techniques have proven difficult to apply to mammalian systems. Although manipulation of the murine genome has led to identification of genes and their function, this approach is laborious, expensive, and often leads to lethal phenotypes. RNA interference (RNAi) is an evolutionarily conserved process of gene silencing that has become a powerful tool for investigating gene function by reverse genetics. Here we describe the delivery of cassettes expressing hairpin RNA targeting green fluorescent protein (GFP) using Moloney leukemia virus-based and lentivirus-based retroviral vectors. Both transformed cell lines and primary dendritic cells, normally refractory to transfection-based gene transfer, demonstrated stable silencing of targeted genes, including the tumor suppressor gene TP53 in normal human fibroblasts. This report demonstrates that both Moloney leukemia virus and lentivirus vector-mediated expression of RNAi can achieve effective, stable gene silencing in diverse biological systems and will assist in elucidating gene functions in numerous cell types including primary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号