首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7. Along with these data, enzyme kinetic studies and extended substrate specificity profiling have led to an understanding of the non-prime-side substrate preferences of KLK4, 5, 6, and 7. The shape and polarity of the specificity pockets S1-S4 explain well their substrate preferences. KLK4, 5, and 6 exhibit trypsin-like specificity, with a strong preference for Arg at the P1 position of substrates. In contrast, KLK7 displays a unique chymotrypsin-like specificity for Tyr, which is also preferred at P2. All four KLKs show little specificity for P3 residues and have a tendency to accept hydrophobic residues at P4. Interestingly, for KLK4, 5, and 7 extended charged surface regions were observed that most likely serve as exosites for physiological substrates.  相似文献   

2.
Escherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide. With optimal peptide substrates, OmpP exhibits high catalytic efficiency (k(cat)/K(m) = 3.0 x 10(6) M(-1)s(-1)). Analysis of the extended amino acid specificity of OmpP by substrate phage revealed that both Arg and Lys are strongly preferred at the P1 and P1' sites of the enzyme. In addition, Thr, Arg, or Ala is preferred at P2; Leu, Ala, or Glu is preferred at P4; and Arg is preferred at P3'. Notable differences in OmpP and OmpT specificities include the greater ability of OmpP to accept Lys at the P1 or P1', site as well as the prominence of Ser at P3 in OmpP substrates. Likewise, the OmpP P1 site could better accommodate Ser; as a result, OmpP was able to cleave a peptide substrate between Ser-Arg about 120 times more efficiently than was OmpT. Interestingly, OmpP and OmpT cleave peptides with three consecutive Arg residues at different sites, a difference in specificity that might be important in the inactivation of cationic antimicrobial peptides. Accordingly, we show that the presence of an F' episome results in increased resistance to the antimicrobial peptide protamine both in ompT mutants and in wild-type E. coli cells.  相似文献   

3.
The S(1)' and S(2)' subsite specificities of human tissue kallikrein 1 (KLK1) and human plasma kallikrein (HPK) were examined with the peptide series Abz-GFSPFRXSRIQ-EDDnp and Abz-GFSPFRSXRIQ-EDDnp [X=natural amino acids or S(PO(3)H(2))]. KLK1 efficiently hydrolyzed most of the peptides except those containing negatively charged amino acids at P(1)' and P(2)' positions. Abz-GFSPFRSSRIQ-EDDnp, as in human kininogen, is the best substrate for KLK1 and exclusively cleaved the R-S bond. All other peptides were cleaved also at the F-R bond. The synthetic human kininogen segment Abz-MISLMKRPPGFSPFRS(390)S(391)RI-NH(2) was hydrolyzed by KLK1 first at R-S and then at M-K bonds, releasing Lys-bradykinin. In the S(390) and S(391) phosphorylated analogs, this order of hydrolysis was inverted due to the higher resistance of the R-S bond. Abz-MISLMKRPPG-FSPFRSS(PO(3)H(2))(391)RI-NH(2) was hydrolyzed by KLK1 at M-K and mainly at the F-R bond, releasing des-(Arg(9))-Lys-Bk which is a B1 receptor agonist. HPK cleaved all the peptides at R and showed restricted specificity for S in the S(1)' subsite, with lower specificity for the S(2)' subsite. Abz-MISLMKRPPGFSPFRSSRI-NH(2) was efficiently hydrolyzed by HPK under bradykinin release, while the analogs containing S(PO(3)H(2)) were poorly hydrolyzed. In conclusion, S(1)' and S(2)' subsite specificities of KLK1 and HPK showed peculiarities that were observed with substrates containing the amino acid sequence of human kininogen.  相似文献   

4.
Membrane-type serine protease 1 (MT-SP1) was recently cloned, and we now report its biochemical characterization. MT-SP1 is predicted to be a type II transmembrane protein with an extracellular protease domain. This localization was experimentally verified using immunofluorescent microscopy and a cell-surface biotinylation technique. The substrate specificity of MT-SP1 was determined using a positional scanning-synthetic combinatorial library and substrate phage techniques. The preferred cleavage sequences were found to be (P4-(Arg/Lys)P3-(X)P2-(Ser)P1-(Arg)P1'-(Ala)) and (P4-(X)P3-(Arg/Lys)P2-(Ser)P1(Arg) P1'(Ala)), where X is a non-basic amino acid. Protease-activated receptor 2 (PAR2) and single-chain urokinase-type plasminogen activator are proteins that are localized to the extracellular surface and contain the preferred MT-SP1 cleavage sequence. The ability of MT-SP1 to activate PARs was assessed by exposing PAR-expressing Xenopus oocytes to the soluble MT-SP1 protease domain. The latter triggered calcium signaling in PAR2-expressing oocytes at 10 nm but failed to trigger calcium signaling in oocytes expressing PAR1, PAR3, or PAR4 at 100 nm. Single-chain urokinase-type plasminogen activator was activated using catalytic amounts of MT-SP1 (1 nm), but plasminogen was not cleaved under similar conditions. The membrane localization of MT-SP1 and its affinity for these key extracellular substrates suggests a role of the proteolytic activity in regulatory events.  相似文献   

5.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

6.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

7.
Human kallikrein 1-related peptidases (KLKs) form a subfamily of 15 extracellular (chymo)tryptic-like serine proteases. KLKs 4, 5, 13 and 14 display altered expression/activity in diverse pathological conditions, including cancer. However, their distinct (patho)physiological roles remain largely uncharacterized. As a step toward distinguishing their proteolytic functions, we attempt to define their primary and extended substrate specificities and identify candidate biological targets. Heterologously expressed KLKs 4, 5, 13 and 14 were screened against fluorogenic 7-amino-4-carbamoylmethylcoumarin positional scanning-synthetic combinatorial libraries with amino acid diversity at the P1-P4 positions. Our results indicate that these KLKs share a P1 preference for Arg. However, each KLK exhibited distinct P2-P4 specificities, attributable to structural variations in their surface loops. The preferred P4-P1 substrate recognition motifs based on optimal subsite occupancy were as follows: VI-QSAV-QL-R for KLK4; YFWGPV-RK-NSFAM-R for KLK5; VY-R-LFM-R for KLK13; and YW-KRSAM-HNSPA-R for KLK14. Protein database queries using these motifs yielded many extracellular targets, some of which represent plausible KLK substrates. For instance, cathelicidin, urokinase-type plasminogen activator, laminin and transmembrane protease serine 3 were retrieved as novel putative substrates for KLK4, 5, 13 and 14, respectively. Our findings may facilitate studies on the role of KLKs in (patho)physiology and can be used in the development of selective KLK inhibitors.  相似文献   

8.
Human kallikrein 8 (KLK8) is a member of the human kallikrein gene family of serine proteases, and its protein, hK8, has recently been suggested to serve as a new ovarian cancer marker. To gain insights into the physiological role of hK8, the active recombinant enzyme was obtained in a pure state for biochemical and enzymatic characterizations. hK8 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type IV, fibrinogen, and high-molecular-weight kininogen. hK8 also converted human single-chain tissue-type plasminogen activator (65 kDa) to its two-chain form (32 and 33 kDa) by specifically cleaving the peptide bond Arg275-Ile276. This conversion resulted in a drastic increase in the activity of the activator toward the fluorogenic substrate Pyr-Gly-Arg-MCA and plasminogen in the absence of fibrin. Our findings suggest that hK8 may be implicated in ECM protein degradation in the area surrounding hK8-producing cells.  相似文献   

9.
Mesotrypsin, an inhibitor-resistant human trypsin isoform, does not activate or degrade pancreatic protease zymogens at a significant rate. These observations led to the proposal that mesotrypsin is a defective digestive protease on protein substrates. Surprisingly, the studies reported here with alpha1-antitrypsin (alpha1AT) revealed that, even though mesotrypsin was completely resistant to this serpin-type inhibitor, it selectively cleaved the Lys10-Thr11 peptide bond at the N-terminus. Analyzing a library of alpha1AT mutants in which Thr11 was mutated to various amino acids, we found that mesotrypsin hydrolyzed lysyl peptide bonds containing Thr or Ser at the P1' position with relatively high specificity (kcat/KM approximately 10(5) m(-1) x s(-1)). Compared with Thr or Ser, P1' Gly or Met inhibited cleavage 13- and 25-fold, respectively, whereas P1' Asn, Asp, Ile, Phe or Tyr resulted in 100-200-fold diminished rates of proteolysis, and Pro abolished cleavage completely. Consistent with the Ser/Thr P1' preference, mesotrypsin cleaved the Arg358-Ser359 reactive-site peptide bond of alpha1AT Pittsburgh and was rapidly inactivated by the serpin mechanism (ka approximately 10(6) m(-1) s(-1)). Taken together, the results indicate that mesotrypsin is not a defective protease on polypeptide substrates in general, but exhibits a relatively high specificity for Lys/Arg-Ser/Thr peptide bonds. This restricted, thrombin-like subsite specificity explains why mesotrypsin cannot activate pancreatic zymogens, but might activate certain proteinase-activated receptors. The observations also identify alpha1AT Pittsburgh as an effective mesotrypsin inhibitor and the serpin mechanism as a viable stratagem to overcome the inhibitor-resistance of mesotrypsin.  相似文献   

10.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   

11.
The human pim-1 proto-oncogene was expressed in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein and the enzymatic properties of its kinase activity were characterized. Likewise, a Pim-1 mutant lacking intrinsic kinase activity was constructed by site-directed mutagenesis (Lys67 to Met) and expressed in E. coli. In vitro assays with the mutant Pim-1 kinase showed no contaminating kinase activity. The wild-type Pim-1 kinase-GST fusion protein showed a pH optimum of 7 to 7.5 and optimal activity was observed at either 10 mM MgCl2 or 5 mM MnCl2. Higher cation concentrations were inhibitory, as was the addition of NaCl to the assays. Previous work by this laboratory assaying several proteins and peptides showed histone H1 and the peptide Kemptide to be efficiently phosphorylated by recombinant Pim-1 kinase. Here we examine the substrate sequence specificity of Pim-1 kinase in detail. Comparison of different synthetic peptide substrates showed Pim-1 to have a strong substrate preference for the peptide Lys-Arg-Arg-Ala-Ser*-Gly-Pro with an almost sixfold higher specificity constant kcat/Km over that of the substrate Kemptide (Leu-Arg-Arg-Ala-Ser*-Leu-Gly). The presence of basic amino acid residues on the amino terminal side of the target Ser/Thr was shown to be essential for peptide substrate recognition. Furthermore, phosphopeptide analysis of calf thymus histone H1 phosphorylated in vitro by Pim-1 kinase resulted in fragments containing sequences similar to that of the preferred synthetic substrate peptide shown above. Therefore, under optimized in vitro conditions, the substrate recognition sequence for Pim-1 kinase is (Arg/Lys)3-X-Ser/Thr*-X', where X' is likely neither a basic nor a large hydrophobic residue.  相似文献   

12.
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.  相似文献   

13.
Substrate hydrolysis by matrix metalloproteinase-9   总被引:4,自引:0,他引:4  
The catalytic clefts of all matrix metalloproteinases (MMPs) have a similar architecture, raising questions about the redundancy in substrate recognition across the protein family. In the present study, an unbiased phage display strategy was applied to define the substrate recognition profile of MMP-9. Three groups of substrates were identified, each occupying a distinct set of subsites within the catalytic pocket. The most prevalent motif contains the sequence Pro-X-X-Hy-(Ser/Thr) at P(3) through P(2'). This sequence is similar to the MMP cleavage sites within the collagens and is homologous to substrates the have been selected for other MMPs. Despite this similarity, most of the substrates identified here are selective for MMP-9 over MMP-7 and MMP-13. This observation indicates that substrate selectivity is conferred by key subsite interactions at positions other than P(3) and P(1'). This study shows that MMP-9 has a unique preference for Arg at both P(2) and P(1), and a preference for Ser/Thr at P(2'). Substrates containing the consensus MMP-9 recognition motif were used to query the protein data bases. A surprisingly limited list of putative physiologic substrates was identified. The functional implications of these proteins lead to testable hypotheses regarding physiologic substrates for MMP-9.  相似文献   

14.
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be inactivated by phosphorylation of Ser-158 by calmodulin-like domain protein kinases (CDPKs) or SNF1-related protein kinases (SnRK1) in vitro. While the phosphorylation site sequence is relatively conserved, most of the deduced sequences of SPS from dicot species surrounding the Ser-158 regulatory phosphorylation site contain a Pro residue at P-4 (where P is the phosphorylated Ser); spinach is the exception and contains an Arg at P-4. We show that a Pro at P-4 selectively inhibits phosphorylation of the peptide by a CDPK relative to a SnRK1. The presence of a Pro at P-4, by allowing a tight turn in the peptide substrate, may interfere with proper binding of residues at P-5 and beyond. Both kinases had greater activity with peptides having basic residues at P-6 and P+5 (in addition to the known requirement for an Arg at P-3/P-4), and when the residue at P-6 was a His, the pH optimum for phosphorylation of the peptide was acid shifted. The results are used to predict proteins that may be selectively phosphorylated by SnRK1s (as opposed to CDPKs), such as SPS in dicot species, or may be phosphorylated in a pH-dependent manner.  相似文献   

15.
Carboxypeptidase M (CPM), an extracellular glycosylphosphatidyl-inositol(GPI)-anchored membrane glycoprotein belonging to the CPN/E subfamily of "regulatory" metallo-carboxypeptidases, specifically removes C-terminal basic residues from peptides and proteins. Due to its wide distribution in human tissues, CPM is believed to play important roles in the control of peptide hormone and growth factor activity at the cell surface, and in the membrane-localized degradation of extracellular proteins. We have crystallized human GPI-free CPM, and have determined and refined its 3.0A crystal structure. The structure analysis reveals that CPM consists of a 295 residue N-terminal catalytic domain similar to that of duck CPD-2 (but only distantly related to CPA/B), an adjacent 86 residue beta-sandwich C-terminal domain characteristic of the CPN/E family but more conically shaped than the equivalent domain in CPD-2, and a unique, partially disordered 25 residue C-terminal extension to which the GPI membrane-anchor is post-translationally attached. Through this GPI anchor, and presumably via some positively charged side-chains of the C-terminal domain, the CPM molecule may interact with the membrane in such a way that its active centre will face alongside, i.e. well suited to interact with other membrane-bound protein substrates or small peptides. Modelling of the C-terminal part of the natural substrate Arg(6)-Met-enkephalin into the active site shows that the S1' pocket of CPM is particularly well designed to accommodate P1'-Arg residues, in agreement with the preference of CPM for cleaving C-terminal Arg.  相似文献   

16.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

17.
18.
Cytochrome P450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme that exhibits a marked genetic polymorphism. Numerous CYP2D6 alleles have been characterized at a functional level, although the consequences for expression and/or catalytic activity of a substantial number of rare variants remain to be investigated. One such allele, CYP2D6*31, is characterized by mutations encoding three amino acid substitutions: Arg296Cys, Arg440His and Ser486Thr. The identification of this allele in an individual with an apparent in vivo poor metabolizer phenotype prompted us to analyze the functional consequence of these substitutions on enzyme activity using yeast as a heterologous expression system. We demonstrated that the Arg440His substitution, alone or in combination with Arg296Cys and/or Ser486Thr, altered the respective kinetic parameters [Km (microM) and kcat (min(-1))] of debrisoquine 4-hydroxylation (wild-type, 25; 0.92; variants, 43-68; 0.05-0.11) and dextromethorphan O-demethylation (wild-type, 1; 4.72; variants, 12-23; 0.64-1.43), such that their specificity constants (kcat/Km) were decreased by more than 95% compared to those observed with the wild-type enzyme. The rates of oxidation of rac-metoprolol at single substrate concentrations of 40 and 400 microM were also markedly decreased by approximately 90% with each CYP2D6 variant containing the Arg440His substitution. These in vitro data confirm that the CYP2D6*31 allele encodes an enzyme with a severely impaired but residual catalytic activity and, furthermore, that the Arg440His exchange alone is the inactivating mutation. A homology model of CYP2D6 based on the crystal structure of rabbit CYP2C5 locates Arg440 on the proximal surface of the protein. Docking the structure of the FMN domain of human cytochrome P450 reductase to the CYP2D6 model suggests that Arg440 is a key member of a cluster of basic amino acid residues important for reductase binding.  相似文献   

19.
SulA protein is known to be one of the physiological substrates of Lon protease, an ATP-dependent protease from Escherichia coli. In this study, we investigated the cleavage specificity of Lon protease toward SulA protein. The enzyme was shown to cleave approximately 27 peptide bonds in the presence of ATP. Among them, six peptide bonds were cleaved preferentially in the early stage of digestion, which represented an apparently unique cleavage sites with mainly Leu and Ser residues at the P1, and P1' positions, respectively, and one or two Gln residues in positions P2-P5. They were located in the central region and partly in the C-terminal region, both of which are known to be important for the function of SulA, such as inhibition of cell growth and interaction with Lon protease, respectively. The other cleavage sites did not represent such consensus sequences, though hydrophobic or noncharged residues appeared to be relatively preferred at the P1 sites. On the other hand, the cleavage in the absence of ATP was very much slower, especially in the central region, than in the presence of ATP. The central region was predicted to be rich in alpha helix and beta sheet structures, suggesting that the enzyme required ATP for disrupting such structures prior to cleavage. Taken together, SulA is thought to contain such unique cleavage sites in its functionally and structurally important regions whose preferential cleavage accelerates the ATP-dependent degradation of the protein by Lon protease.  相似文献   

20.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号