首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The mitotic exit network (MEN) controls the exit from mitosis in budding yeast. The proline-directed phosphatase, Cdc14p, is a key component of MEN and promotes mitotic exit by activating the degradation of Clb2p and by reversing Cdk-mediated mitotic phosphorylation. Cdc14p is sequestered in the nucleolus during much of the cell cycle and is released in anaphase from the nucleolus to the nucleoplasm and cytoplasm to perform its functions. Release of Cdc14p from the nucleolus during anaphase is well understood. In contrast, less is known about the mechanism by which Cdc14p is released from the nucleus to the cytoplasm. Here we show that Cdc14p contains a leucine-rich nuclear export signal (NES) that interacts with Crm1p physically. Mutations in the NES of Cdc14p allow Clb2p degradation and mitotic exit, but cause abnormal morphology and cytokinesis defects at non-permissive temperatures. Cdc14p localizes to the bud neck, among other cytoplasmic structures, following its release from the nucleolus in late anaphase. This bud neck localization of Cdc14p is disrupted by mutations in its NES and by the leptomycin B-mediated inhibition of Crm1p. Our results suggest a requirement for Crm1p-dependent nuclear export of Cdc14p in coordinating mitotic exit and cytokinesis in budding yeast.  相似文献   

2.
Completion of mitotic exit and cytokinesis requires the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. A key enzyme that counteracts Cdk during budding yeast mitotic exit is the Cdc14 phosphatase. Cdc14 is inactive for much of the cell cycle, sequestered by its inhibitor Net1 in the nucleolus. At anaphase onset, separase-dependent down-regulation of PP2ACdc55 allows phosphorylation of Net1 and consequent Cdc14 release. How separase causes PP2ACdc55 down-regulation is not known. Here, we show that two Cdc55-interacting proteins, Zds1 and Zds2, contribute to timely Cdc14 activation during mitotic exit. Zds1 and Zds2 are required downstream of separase to facilitate nucleolar Cdc14 release. Ectopic Zds1 expression in turn is sufficient to down-regulate PP2ACdc55 and promote Net1 phosphorylation. These findings identify Zds1 and Zds2 as new components of the mitotic exit machinery, involved in activation of the Cdc14 phosphatase at anaphase onset. Our results suggest that these proteins may act as separase-regulated PP2ACdc55 inhibitors.  相似文献   

3.
In the budding yeast Saccharomyces cerevisiae, Cdc14 is sequestered within the nucleolus before anaphase entry through its association with Net1/Cfi1, a nucleolar protein. Protein phosphatase PP2ACdc55 dephosphorylates Net1 and keeps it as a hypophosphorylated form before anaphase. Activation of the Cdc fourteen early anaphase release (FEAR) pathway after anaphase entry induces a brief Cdc14 release from the nucleolus. Some of the components in the FEAR pathway, including Esp1, Slk19, and Spo12, inactivate PP2ACdc55, allowing the phosphorylation of Net1 by mitotic cyclin-dependent kinase (Cdk) (Clb2-Cdk1). However, the function of another FEAR component, the Polo-like kinase Cdc5, remains elusive. Here, we show evidence indicating that Cdc5 promotes Cdc14 release primarily by stimulating the degradation of Swe1, the inhibitory kinase for mitotic Cdk. First, we found that deletion of SWE1 partially suppresses the FEAR defects in cdc5 mutants. In contrast, high levels of Swe1 impair FEAR activation. We also demonstrated that the accumulation of Swe1 in cdc5 mutants is responsible for the decreased Net1 phosphorylation. Therefore, we conclude that the down-regulation of Swe1 protein levels by Cdc5 promotes FEAR activation by relieving the inhibition on Clb2-Cdk1, the kinase for Net1 protein.  相似文献   

4.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

5.
6.

Background  

In S. cerevisiae, the mitotic exit network (MEN) proteins, including the Polo-like protein kinase Cdc5 and the protein phosphatase Cdc14, are required for exit from mitosis. In pre-anaphase cells, Cdc14 is sequestered to the nucleolus by Net1 as a part of the RENT complex. When cells are primed to exit mitosis, the RENT complex is disassembled and Cdc14 is released from the nucleolus.  相似文献   

7.
In yeast, the protein phosphatase Cdc14 promotes chromosome segregation, mitotic exit, and cytokinesis by reversing M-phase phosphorylations catalyzed by Cdk1. A key feature of Cdc14 regulation is its sequestration within the nucleolus, which restricts its access to potential substrates for much of the cell cycle. Mammals also possess a nucleolar Cdc14 homolog, termed Cdc14B, but its roles during mitosis and cell division remain speculative. Here we analyze Cdc14B’s subcellular dynamics during mitosis and rigorously test its functional contributions to cell division through homozygous disruption of the Cdc14B locus in human somatic cells. While Cdc14B is initially released from nucleoli at the start of mitosis, the phosphatase quickly redistributes onto segregating sister chromatids during anaphase. This relocalization is mainly driven by Cdk1 inactivation, as pharmacologic inhibition of Cdk1 in prometaphase cells redirects Cdc14B onto chromosomes. However, in sharp contrast to yeast cdc14 mutants, human Cdc14BΔ/Δ cells were viable and lacked defects in spindle assembly, anaphase progression, mitotic exit, and cytokinesis, and continued to segregate ribosomal DNA repeats with near-normal proficiency. Our findings reveal substantial divergence in mitotic regulation between yeast and mammalian cells, as the latter possess efficient mechanisms for completing late M-phase events in the absence of a nucleolar Cdc14-related phosphatase.  相似文献   

8.
Queralt E  Lehane C  Novak B  Uhlmann F 《Cell》2006,125(4):719-732
After anaphase, the high mitotic cyclin-dependent kinase (Cdk) activity is downregulated to promote exit from mitosis. To this end, in the budding yeast S. cerevisiae, the Cdk counteracting phosphatase Cdc14 is activated. In metaphase, Cdc14 is kept inactive in the nucleolus by its inhibitor Net1. During anaphase, Cdk- and Polo-dependent phosphorylation of Net1 is thought to release active Cdc14. How Net1 is phosphorylated specifically in anaphase, when mitotic kinase activity starts to decline, has remained unexplained. Here, we show that PP2A(Cdc55) phosphatase keeps Net1 underphosphorylated in metaphase. The sister chromatid-separating protease separase, activated at anaphase onset, interacts with and downregulates PP2A(Cdc55), thereby facilitating Cdk-dependent Net1 phosphorylation. PP2A(Cdc55) downregulation also promotes phosphorylation of Bfa1, contributing to activation of the "mitotic exit network" that sustains Cdc14 as Cdk activity declines. These findings allow us to present a new quantitative model for mitotic exit in budding yeast.  相似文献   

9.
The Cdc14 phosphatase family antagonizes Cdk1 phosphorylation and is important for mitotic exit. To access their substrates, Cdc14 phosphatases are released from nucleolar sequestration during mitosis. Clp1/Flp1, the Schizosaccharomyces pombe Cdc14 orthologue, and Cdc14B, a mammalian orthologue, also exit the nucleolus during interphase upon DNA replication stress or damage, respectively, implicating Cdc14 phosphatases in the response to genotoxic insults. However, a mechanistic understanding of Cdc14 phosphatase nucleolar release under these conditions is incomplete. We show here that relocalization of Clp1 during genotoxic stress is governed by complex phosphoregulation. Specifically, the Rad3 checkpoint effector kinases Cds1 and/or Chk1, the cell wall integrity mitogen-activated protein kinase Pmk1, and the cell cycle kinase Cdk1 directly phosphorylate Clp1 to promote genotoxic stress–induced nucleoplasmic accumulation. However, Cds1 and/or Chk1 phosphorylate RxxS sites preferentially upon hydroxyurea treatment, whereas Pmk1 and Cdk1 preferentially phosphorylate Clp1 TP sites upon H2O2 treatment. Abolishing both Clp1 RxxS and TP phosphosites eliminates any genotoxic stress–induced redistribution. Reciprocally, preventing dephosphorylation of Clp1 TP sites shifts the distribution of the enzyme to the nucleoplasm constitutively. This work advances our understanding of pathways influencing Clp1 localization and may provide insight into mechanisms controlling Cdc14B phosphatases in higher eukaryotes.  相似文献   

10.
Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.  相似文献   

11.
12.
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and gamma-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.  相似文献   

13.
We evaluated the hypothesis that the N-terminal region of the replication control protein Cdc6 acts as an inhibitor of cyclin-dependent kinase (Cdk) activity, promoting mitotic exit. Cdc6 accumulation is restricted to the period from mid-cell cycle until the succeeding G1, due to proteolytic control that requires the Cdc6 N-terminal region. During late mitosis, Cdc6 is present at levels comparable with Sic1 and binds specifically to the mitotic cyclin Clb2. Moderate overexpression of Cdc6 promotes viability of CLB2Deltadb strains, which otherwise arrest at mitotic exit, and rescue is dependent on the N-terminal putative Cdk-inhibitory domain. These observations support the potential for Cdc6 to inhibit Clb2-Cdk, thus promoting mitotic exit. Consistent with this idea, we observed a cytokinesis defect in cdh1Delta sic1Delta cdc6Delta2-49 triple mutants. However, we were able to construct viable strains, in three different backgrounds, containing neither SIC1 nor the Cdc6 Cdk-inhibitory domain, in contradiction to previous work. We conclude, therefore, that although both Cdc6 and Sic1 have the potential to facilitate mitotic exit by inhibiting Clb2-Cdk, mitotic exit nevertheless does not require any identified stoichiometric inhibitor of Cdk activity.  相似文献   

14.
Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.  相似文献   

15.
Inactivation of mitotic cyclin-dependent kinases (Cdks) is required for cells to exit mitosis [1] [2]. In the budding yeast Saccharomyces cerevisiae, Cdk inactivation is triggered by the phosphatase Cdc14, which is activated by a complex network of regulatory proteins that includes the protein kinase Cdc15 [3] [4] [5] [6]. Here we show that the ability of Cdc15 to promote mitotic exit is inhibited by phosphorylation. Cdc15 is phosphorylated in vivo at multiple Cdk-consensus sites during most of the cell cycle, but is transiently dephosphorylated in late mitosis. Although phosphorylation appears to have no effect on Cdc15 kinase activity, a non-phosphorylatable mutant of Cdc15 is a more potent stimulator of mitotic exit than wild-type Cdc15, indicating that phosphorylation inhibits Cdc15 function in vivo. Interestingly, inhibitory phosphorylation of Cdc15 is removed by the phosphatase Cdc14 in vitro, and overproduction of Cdc14 leads to Cdc15 dephosphorylation in vivo. Thus, Cdc15 serves both as an activator and substrate of Cdc14. Although this scheme raises the possibility that positive feedback promotes Cdc14 activation, we present evidence that such feedback is not essential for Cdc14 activation in vivo. Instead, Cdc15 dephosphorylation may promote some additional function of Cdc15 that is independent of its effects on Cdc14 activation.  相似文献   

16.
Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.  相似文献   

17.
Wang Y  Hu F  Elledge SJ 《Current biology : CB》2000,10(21):1379-1382
At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.  相似文献   

18.
19.
BACKGROUND: The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis. Lte1 is present throughout the cell during G1 but is sequestered in the bud during S phase and mitosis by an unknown mechanism. RESULTS: We show that anchorage of Lte1 in the bud requires septins, the cell polarity determinants Cdc42 and Cla4, and Kel1. Lte1 physically associates with Kel1 and requires Kel1 for its localization in the bud, suggesting a role for Kel1 in anchoring Lte1 at the bud cortex. Our data further implicate the PAK-like protein kinase Cla4 in controlling Lte1 phosphorylation and localization. CLA4 is required for Lte1 phosphorylation and bud localization. Furthermore, when overexpressed, CLA4 induces Lte1 phosphorylation and localization to regions of polarized growth. Finally, we show that Cdc14, directly or indirectly, controls Lte1 dephosphorylation and delocalization from the bud during exit from mitosis. CONCLUSION: Restriction of Lte1 to the bud cortex depends on the cortical proteins Cdc42 and Kel1 and the septin ring. Cla4 and Cdc14 promote and demote Lte1 localization at and from the bud cortex, respectively, suggesting not only that the phosphorylation status of Lte1 controls its localization but also indicating that Cla4 and Cdc14 are key regulators of the spatial asymmetry of Lte1.  相似文献   

20.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号