首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Dimyristoyl phosphatidylcholine rapidly exchanges between vesicles at 37°C without vesicle fusion.The rate of the transbilayer movement of dimyristoyl phosphatidylcholine in sonicated vesicles has been measured employing 13C NMR using N-13CH3? labeled lipids which are introduced into the outer monolayer of non-labeled vesicles by a phosphatidylcholine exchange protein. The rate of transbilayer movement of dimyristoyl phosphatidylcholine shows a distinct maximum (halftime 4 h) in the temperature range at which the hydrocarbon phase transition occurs.The activation energy of the flip-flop rate above the phase transition is 23.7 ± 2.0 kcal/mol.  相似文献   

2.
Glucagon is found to interact with dimyristoyl glycerophosphocholine both above and below the phase transition temperature of the lipid. Above the phase transition temperature the interaction is manifested by an increase in the rate of vesicle aggregation and by an increased permeability of unilamellar vesicles to Eu3+ and to Fe(CN)63−. However, no stable lipoprotein complex can be detected by gel filtration. Below the phase transition glucagon can form stable complexes with dimyristoyl glycerophosphocholine vesicles but cannot rapidly rearrange these vesicles to disk-shaped particles until the phase transition temperature is approached. The energy of activation for the dissociation of glucagon from the disk-shaped lipoprotein particle is 29 kcal/mol at temperatures above 36°C but increases markedly at lower temperatures, as the region of the lipid phase transition is approached. This increase in energy of activation at lower temperatures is most probably due to the larger amount of energy required to rearrange gel-state lipid in the transition state and provides an explanation for the unusual kinetic stability of the glucagon-dimyristoyl glycerophosphocholine lipoprotein complex only at temperatures below the phase transition of the lipid.  相似文献   

3.
Reconstitution of glycophorin into dimyristoyl phosphatidylcholine and sphingomyelin vesicles was sub-maximal below the phase transition temperatures of these lipids. Reconstitution of glycophorin into diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine liposomes was maximal within a range of temperatures below the phase transition temperatures of dimyristoyl phosphatidylcholine and sphingomyelin but above the phase transition temperatures of diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine. These findings indicate a greater tendency for reconstitution of glycophorin into fluid as opposed to solid lipid phases.  相似文献   

4.
Cytochrome P-450 LM2 was reconstituted by the cholate-dialysis method into vesicles containing a mixture of either phosphatidylcholine or phosphatidylethanolamine with up to 50 mol% of phosphatidic acid. Phase transition curves in the presence or absence of cytochrome P-450 were obtained from electron paramagnetic resonance experiments by measuring the partitioning of 2,2,6,6-tetramethylpiperidine-1-oxyl. Protein-free phospholipid vesicles exhibit a phase separation into domains of gel phase enriched in phosphatidic acid in a surrounding fluid matrix containing mainly phosphatidylcholine. The phase transition of the phosphatidic acid domains disappeared following incorporation of cytochrome P-450 into the bilayers. In contrast, in vesicles containing mixtures of egg-phosphatidic acid and dimyristoyl phosphatidylcholine, the phase transition of the domains enriched in dimyristoyl phosphatidylcholine was less sharp than in the corresponding vesicles containing cytochrome P-450. The results of both of these experiments could be explained by a redistribution of the mol fraction of the two phospholipids in the gel phase due to preferential binding of the egg-phosphatidic acid to the cytochrome P-450. For comparison, incorporation of cytochrome P-450 into uncharged vesicles of dimyristoyl phosphatidylcholine and egg-phosphatidylethanolamine did not alter the  相似文献   

5.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions.This lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (?120°C to +120°C).Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids.Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 ± 0.026 ml/g for the partial specific volume of this lipid.We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude.Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

6.
Size enlargement of dipalmitoyl phosphatidylcholine vesicles was greatly accelerated in the range of the phase-transition temperatures, when fatty acid concentration was above a threshold level (‘critical’ concentration). This ‘critical’ concentration varied with the length of the fatty acid chain. The size enlargement process had second-order kinetics dependent on the vesicle concentration. Alkaline pH and low ionic strength inhibited the rate of size enlargement.Phospholipid exchange between dimyristoyl and dipalmitoyl phosphatidylcholine vesicles increased abruptly above a ‘critical’ fatty acid concentration. The donor vesicles were those vesicles in which fatty acids reached the ‘critical’ concentration. The phospholipid exchange occurred both in fluid- and in solid-state vesicles. The ‘critical’ fatty acid concentration accelerating the phospholipid exchange process was lower than that accelerating the size enlargement process.The phospholipid exchange process explained in terms of a diminished hydrophobic attraction among the phospholipid molecules of the bilayer occurs via a free phospholipid molecule transfer through the aqueous phase. The size enlargement process is interpreted in terms of high fatty acid concentration in the membrane fluid domains. The membrane structure is locally perturbed inducing vesicle sticking after collision.  相似文献   

7.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

8.
The effect of membrane morphology on the cooperativity of the ordered-fluid, lipid phase transition has been investigated by comparing the transition widths in extended, multibilayer dispersions of dimyristoyl phosphatidylcholine, and also of dipalmitoyl phosphatidylcholine, with those in the small, single-bilayer vesicles obtained by sonication. The electron spin resonance spectra of three different spin-labelled probes, 2,2,6,6-tetramethylpiperdine-N-oxyl, phosphatidylcholine and stearic acid, and also 90° light scattering and optical turbidity measurements were used as indicators of the phase transition. In all cases the transition was broader in the single-bilayer vesicles than in the multibilayer dispersions, corresponding to a decreased cooperativity on going to the small vesicles. Comparison of the light scattering properties of centrifuged and uncentrifuged, sonicated vesicles suggests that these are particularly sensitive to the presence of intermediate-size particles, and thus the spin label measurements are likely to give a more reliable measure of the degree of cooperativity of the small, single-bilayer vesicles. Application of the Zimm and Bragg theory ((1959) J. Chem. Phys. 31, 526–535) of cooperative transitions to the two-dimensional bilayer system shows that the size of the cooperative unit, 1/?σ, is a measure of the mean number of molecules, per perimeter molecule, in a given region of ordered or fluid lipid at the centre of the transition. From this result it is found that it is the vesicle size which limits the cooperativity of the transition in the small, single-bilayer vesicles. The implications for the effect of membrane structure and morphology on the cooperativity of phase transitions in biological membranes, and for the possibility of achieving lateral communication in the plane of the membrane, are discussed.  相似文献   

9.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

10.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

11.
The protein-mediated phospholipid exchange between small unilamellar vesicles was investigated by fluorescence polarization measurements with diphenylhexatriene as optical probe. Thermotropic phase-transition measurements were taken after mixing two vesicle preparations of distinct and different phase-transition temperatures or having different states of charge. From the heights of each phase-transition step, we were able to follow the lipid-exchange process in the presence, as well as in the absence (natural exchange), of so-called transfer protein isolated from beef liver. A strong enhancement of the lipid transfer was observed at the corresponding lipid-phase-transition temperature, which is explained by the presence of fluctuating fluid and ordered domains co-existing at the lipid-phase-transition temperature. A unidirectional lipid transfer of the neutral component was observed between negatively charged phosphatidic acid and neutral phosphatidylcholine vesicles. Fluorescence polarization measurements showed the disappearance of the phosphatidylcholine phase transition, whereas the phosphatidic acid phase transition broadened and its phase transition temperature became lower.  相似文献   

12.
The effect of membrane morphology on the cooperativity of the ordered-fluid, lipid phase transition has been investigated by comparing the transition widths in extended, multibilayer dispersons of dimyristoyl phosphatidyl-choline, and also of dipalmitoyl phosphatidylcholine, with those in the small, single-bilayer vesicles obtained by sonication. The electron spin resonance spectra of three different spin-labelled probes, 2,2,6,6-tetramethylpiperdine-N-oxyl, phosphatidylcholine and stearic acid, and also 90 degrees light scattering and optical turbidity measurements were used as indicators of the phase transition. In all cases the transition was broader in the single-bilayer vesicles than in the multibilayer dispersions, corresponding to a decreased cooperativity on going to the small vesicles. Comparison of the light scattering properties of centrifuged and uncentrifuged, sonicated vesicles suggests that these are particularly sensitive to the presence of intermediate-size particles, and thus the spin label measurements are likely to give a more reliable measure of the degree of cooperativity of the small, single-bilayer vesicles. Application of the Zimm and Bragg theory ((1959) J. Chem. Phys. 31, 526-535) of cooperative transitions to the two-dimensional bilayer system shows that the size of the cooperative unit, 1/square root sigma, is a measure of the mean number of molecules per perimeter molecule, in a given region of ordered or fluid lipid at the centre of the transition. From this result it is found that it is the vesicle size which limits the cooperativity of the transition in the small, single-bilayer vesicles. The implications for the effect of membrane structure and morphology on the cooperativity of phase transitions in biological membranes, and for the possibility of achieving lateral communication in the plane of the membrane, are discussed.  相似文献   

13.
A prodrug (Fig. 1(IV)) is synthesized consisting of the beta-blocker bupranolol which is covalently linked to 1, 3-dipalmitoyl-2-succinyl-glycerol. The resulting lipid-like prodrug is amphipathic and surface active. It disperses readily in H2O above 30 degrees C forming a smectic lamellar phase. This prodrug bears one positive charge at neutral pH and hence the swelling behaviour of dispersions in H2O is similar to that of charged phospholipids: the dispersions show continuous swelling with increasing water content and consequently in the excess H2O region of the phase diagram the thermodynamically most stable structure is the unilamellar vesicle. This includes oligomeric vesicles which may be defined as unilamellar vesicles containing smaller, also unilamellar vesicles entrapped in their internal aqueous compartment. The prodrug dispersions in H2O are polydisperse with vesicle sizes ranging from 0.1 micron to several micron. Sonication of these dispersions produce small unilamellar vesicles of an average size and size distribution similar to sonicated egg phosphatidylcholine dispersions. Unsonicated dispersions of the prodrug in H2O undergo reversibly sharp order-disorder transitions at 32 degrees C with an enthalpy change of delta H = 10 kcal/mol. In sonicated aqueous dispersions this phase transition is asymmetric and significantly broadened indicating that the cooperativity is markedly reduced. The peak temperature and enthalpy change of this broad transition are reduced compared to the transition observed with unsonicated dispersions. The temperature dependence of the electron spin resonance (ESR) hyperfine splitting and order parameter also reflects the order-disorder transition. From ESR spin labeling it is concluded that in sonicated dispersions the prodrug molecule is more mobile and its anisotropy of motion is reduced compared to unsonicated dispersions. This result indicates that the molecular packing in the highly curved bilayers of small unilamellar prodrug vesicles is significantly perturbed compared to bilayers of unsonicated dispersions.  相似文献   

14.
Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.Abbreviations ADP adenosine diphosphate - DMPC dimyristoyl phosphatidylcholine - EDTA ethylenediaminetetraacetic acid - LUV large unilamellar vesicle - MLV multilamellar vesicle - PAGE polyacrylamide gel electrophoresis - PNPase or PNP polynucleotide phosphorylase - SUV small unilamellar vesicle Correspondence to.: A.C. Chakrabarti  相似文献   

15.
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane components between different vesicle populations. No appreciable fusion was detected between populations of non-sonicated phospholipid vesicles incubated in aqueous salt (NaCl) solutions. Mixing of vesicle membrane components via diffusion of phospholipid molecules between vesicles was observed in populations of negatively charged phosphatidylglycerol vesicles but similar exchange diffusion was not detected in populations of neutral phosphatidylcholine vesicles. Incubation of sonicated vesicle populations at temperatures close to or above the phospholipid transition temperature resulted in an increase in vesicle size and mixing of vesicle membrane components as determined by a gradual change in the thermotropic properties of the mixed vesicle population. The interaction of purified phospholipid vesicles was also examined in the presence of myristic acid and lysolecithin. Our results indicate that while these agents enhance mixing of vesicle membrane components, in most cases mixing probably proceeds via diffusion of phospholipid molecules rather than by fusion of entire vesicles. Increased mixing of vesicle membrane components was also produced when vesicles were prepared containing a purified hydrophobic protein (myelin proteolipid apoprotein) or were incubated in the presence of dimethylsulfoxide. In these two systems, however, the evidence suggests that mixing of membrane components results from the fusion of entire vesicles.  相似文献   

16.
Small unilamellar vesicles have been prepared from phosphatidylethanolamine by sonication of the lipid in aqueous buffers of low ionic strength and high pH. These vesicles and their interactions with various di- and trivalent cations have been characterized using freeze-fracture electron microscopy. Phosphatidylethanolamine from 4 sources was examined: Hens' yolk phosphatidylethanolamine, human grey matter phosphatidylethanolamine, Escherichia coli phosphatidylethanolamine and dimyristoyl phosphatidylethanolamine. The phosphatidylethanolamine from natural sources formed spherical, uniform 20–40 nm vesicles while dimyristoyl phosphatidylethanolamine formed larger, 70 × 25 nm, disc-shaped vesicles when sonicated above the phase transition temperature. Fusion of the unilamellar egg phosphatidylethanolamine, E. coli phosphatidylethanolamine and human grey matter phosphatidylethanolamine vesicles was induced by dialysis against buffers containing 2.0 nM Ca+ or 3.0 mM Mg2+. The fusion of the vesicles resulted in the precipitation of the lipid and the formation of multilamellar and, in some cases, hexagonal II structures. Dimyristoyl phosphatidylethanolamine vesicles were precipitated at 55°C by 1.0 mM Ca+ or 2.0 mM Mg2+. Treatment of the calcium- and magnesium-precipitated vesicles of hen's egg yolk phosphatidylethanolamine, E. coli phosphatidylethanolamine, human grey matter phosphatidylethanolamine and dimyristoyl phosphatidylethanolamine with EDTA resulted in resuspension of the lipid. The specific size and shape of the vesicles formed in this manner depends on the type of phosphatidylethanolamine and ion involved. Dialysis of the Ca+- and Mg2+-precipitated egg phosphatidylethanolamine vesicles against buffer containing no Ca+, Mg2+ or EDTA also resulted in dissociation of the precipitate and formation again of a new vesicle population. This evidence indicates that the Ca+ and Mg2+ are not strongly bound to the phosphatidylethanolamine.Egg phosphatidylethanolamine vesicles would fuse in the presence of many di- and trivalent ions. Egg phosphatidylethanolamine vesicles were precipitated by beryllium, aluminum, chromium, manganese, cobalt, nickel, copper, zinc, strontium, cadmium, barium, lanthanium, mercury and lead. The amount of ion required to precipitate the vesicles and the type of structure resulting from the fusion of the vesicles was found to be unique for each ion.Small unilamellar vesicles prepared from egg phosphatidylethanolamine were reacted with several basic proteins (cytochrome c, basic protein from human myelin, protamine, poly-l-lysine and cationically-modified ferritin). The basic proteins also initiated the fusion of egg phosphatidylethanolamine vesicles but these proteins did not fuse egg phosphatidylcholine vesicles nor did normal ferritin initiate fusion. Human myelin basic protein initiated the fusion of dimyristoyl phosphatidylethanolamine vesicles above and below the phase transition of this lipid.  相似文献   

17.
The effect of 2,3-seco-5 alpha-cholestan-2,3-dioic acid on the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine is markedly dependent on pH. Above pH 6.56, the 2,3-seco-5 alpha-cholestan-2,3-dioic acid raises the temperature of this transition, i.e., it stabilizes the bilayer phase. At pH 6.56 there is little effect of this sterol derivative on the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine. However, below pH 6.56, the 2,3-seco-5 alpha-cholestan-2,3-dioic acid markedly lowers the temperature of this transition. The promotion of hexagonal phase formation increases both with increasing mol fraction of this sterol derivative and with lower pH, particularly in the range between pH 6.56 and pH 5.0. Below about pH 6, 2,3-seco-5 alpha-cholestan-2,3-dioic acid also induces vesicle fusion as measured both by lipid mixing as well as by mixing of aqueous contents. For these assays vesicles made of phosphatidylethanolamine (made from egg phosphatidylcholine) and extruded through 0.2 micron pore membranes were used. At higher concentrations or at lower pH the 2,3-seco-5 alpha-cholestan-2,3-dioic acid induces some leakage of the contents of these vesicles. Nevertheless, with vesicles containing only 2 weight% sterol derivative, it was possible to demonstrate substantial mixing of aqueous contents of the vesicles over the pH range 3.5 to 5.5. Several of the properties of 2,3-seco-5 alpha-cholestan-2,3-dioic acid indicate that this compound may be useful in sensitizing vesicles to acid-induced fusion for the purpose of endocytic drug delivery.  相似文献   

18.
The interaction between apolipoprotein A-I and small unilamellar vesicles of dipalmitoylphosphatidylcholine at the lipid phase transition resulted in complete release of vesicle contents at molar ratios of lipid to protein from 4000:1 down to 50:1. This indicated the existence of two types of stable complexes: a vesicular apo-A-I complex with a maximum of two to three apo-A-Is/vesicle, and a micellar complex (disc) with a stoichiometry of about 50 phosphatidylcholines/apo-A-I (mol/mol). We characterized the complexes by density gradient centrifugation, by gel filtration, and by immunoprecipitation using an anti-apo-A-I antibody. The morphology of the discs was similar to that of previously reported discs. Apo-A-I-induced release of vesicle contents was monitored by the relief of self-quenching of vesicle-encapsulated carboxyfluorescein. Using this assay we characterized the nature of the interaction between apo-A-I and phospholipid vesicles. The formation of complexes between vesicles and apo-A-I followed a two-step process; below or above the lipid phase transition temperature (Tc), apo-A-I bound to phosphatidylcholine vesicles but caused little leakage of contents. Kinetic analysis of the interaction between apo-A-I and dipalmitoylphosphatidylcholine vesicles below Tc indicated that about 1 in 500 collisions leads to a stable apo-A-I-vesicle complex. The second step involved passage of those complexes through Tc, which resulted in a very rapid transition into discs or vesicular complexes. Vesicular complexes contain apo-A-I which was no longer capable of interacting with pure lipid. Discs, on the other hand, interacted with vesicles at their phase transition.  相似文献   

19.
Sonicated vesicles of phosphatidylserine and phosphatidylserine/phosphatidylcholine mixtures were recombined with spectrin-actin from human erythrocyte ghosts. Morphological properties and physicochemical characteristics of the recombinates were studied with freeze etch electron microscopy, 31P NMR and differential scanning calorimetry. Sonicated dimyristoyl phosphatidylserine vesicles show a decrease in enthalpy change of the lipid phase transition upon addition of spectrin-actin. These vesicles collapse and fuse, into multilamellar structures in the presence of spectrin-actin, as demonstrated by freeze fracturing and NMR. Spectrin-actin cannot prevent the salt formation between phosphatidylserine and Ca2+, all phosphatidylserine is withdrawn from the lipid phase transition. In contrast a protection against the action of Mg2+ could be observed. Mixed bilayers of dimyristoyl phosphatidylserine/dimyristoyl phosphatidylcholine show phase separations at molar ratios above 1/1 (van Dijck, P.W.M., de Kruijff, B., Verkleij, A.J., van Deenen, L.L.M. and de Gier, J. (1978) Biochim. Biophys. Acta 512, 84--96). These phase spearations can be prevented by spectrin-actin. Ca2+-induced lateral phase separations in cocrystallizing phosphatidylserine/phosphatidylcholine mixtures, can be reduced by spectrin-actin. Formation of the Ca2+-phosphatidylserine salt, occurring in addition to lateral phase separation when mixtures contain more than 30 mol % phosphatidylserine, cannot be prevented by spectrin-actin.  相似文献   

20.
Myelin basic protein associates with bilayer vesicles of pure egg phosphatidylcholine, L-alpha-dimyristoyl phosphatidylcholine and DL-alpha-dipalmitoyl phosphatidylcholine. Under optimum conditions the vesicles contain 15-18% of protein by weight. The binding to dipalmitoyl phosphatidylcholine is facilitated above its gel-to-liquid crystalline transition temperature. At low ionic strength the protein provokes a large increase in vesicle size and aggregation of these enlarged vesicles. Above a sodium chloride concentration of 0.07 M vesicle fusion is far less marked but aggregation persists. The pH- and ionic strength-dependence of this aggregation follows that of the protein alone; in both cases it occurs despite appreciable electrostatic repulsion between the associated species. A similar interaction was observed with diacyl phosphatidylserine vesicles. These observations, which contrast with earlier reports in the literature of a lack of binding of basic protein to phosphatidylcholine-containing lipids, demonstrate the ability of this protein to interact non-ionically with lipid bilayers. The strong cross-linking of lipid bilayers suggests a role for basic protein in myelin, raising the possibility that the protein is instrumental in collapsing the oligodendrocyte cell membrane and thus initiating myelin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号