首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of yeast grown anaerobically in media limiting in potassium   总被引:2,自引:1,他引:1  
1. Saccharomyces cerevisiae was grown anaerobically in media with different concentrations of K(+) down to less than 1mm. Below 3.2mm the K(+) concentration limited the growth rate and yield. 2. Yeast extract was essential for maximum growth. The yield of cells when the medium contained 0.83mm-K(+) was only 30% of the yield with 90mm-K(+). 3. At the end of anaerobic growth the cells grown in 0.83mm-K(+) had a higher concentration of oxidative enzymes than cells grown in 90mm-K(+). 4. The cells grown anaerobically in 0.83mm-K(+) could adapt to aerobic conditions if K(+) was present in the adaptation medium, but not otherwise. 5. The enzyme pattern of the yeast grown aerobically in 0.83mm-K(+) was very similar to the anaerobically grown cells and did not change markedly after the glucose was consumed.  相似文献   

2.
Salmonella typhimurium accumulates glutamate in response to osmotic stress. Cells in aerobic exponential growth have an intracellular pool of approximately 125 nmol of glutamate mg of protein-1. When cells were grown in minimal medium with 500 mM NaCl, KCl, or sucrose, 290 to 430 nmol of glutamate was found to accumulate. Values were lower when cells were harvested in stationary phase. Cells were grown in conventional medium, harvested, washed, resuspended in the control medium or in medium with osmolytes, and aerated for 1 h. With aeration, glutamate was found to accumulate at levels comparable to those observed in exponential cultures. Antibiotics inhibiting protein synthesis did not affect glutamate accumulation when cells were aerated. Strains with mutations in glutamate synthase (glt) or in glutamate dehydrogenase (gdh) accumulated nearly normal levels of glutamate under these conditions. A double (gdh glt) mutant accumulated much less glutamate (63.9 nmol mg of protein-1), but a 1.9-fold excess accumulated when cells were aerated with osmotic stress. Methionine sulfone, an inhibitor of glutamate synthase, did not prevent accumulation of glutamate in cells aerated with osmotic stress. Glutamate dehydrogenase is thought to have minimum activity when ammonium is limiting. Resuspending cells with limiting ammonium reduced glutamate production but did not eliminate accumulation of excess glutamate when cells were osmotically stressed. Amino oxyacetic acid, an inhibitor of transamination reactions, did not prevent accumulation of excess glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
In contrast to the absolute Na(+) requirement for anaerobic growth of Aerobacter aerogenes on citrate as sole carbon source, aerobic growth of this microorganism did not require the presence of Na(+). However, Na(+) (optimal concentration, 10 mm) did increase the maximal amount of aerobic growth by 60%, even though it did not change the rate of growth. This increase in growth was specifically affected by Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). Enzyme profiles were determined in A. aerogenes cells grown aerobically on citrate in media of varying cationic composition. Cells grown in Na(+)-free medium possessed all the enzymes of the citric acid cycle including alpha-ketoglutarate dehydrogenase, which is repressed by anaerobic conditions of growth. The enzymes of the anaerobic citrate fermentation pathway, citritase and oxalacetate decarboxylase, were also present in these cells, but this pathway of citrate catabolism was effectively blocked by the absence of Na(+), which is essential for the activation of the oxalacetate decarboxylase step. Thus, in Na(+)-free medium, aerobic citrate catabolism proceeded solely via the citric acid cycle. Addition of 10 mm Na(+) to the aerobic citrate medium resulted in the activation of oxalacetate decarboxylase and the repression of alpha-ketoglutarate dehydrogenase, thereby diverting citrate catabolism from the (aerobic) citric acid cycle mechanism to the fermentation mechanism characteristic of anaerobic growth. The further addition of 2% potassium acetate to the medium caused repression of citritase and derepression of alpha-ketoglutarate dehydrogenase, switching citrate catabolism back into the citric acid cycle.  相似文献   

5.
To better understand cellular zinc homeostasis and characterize the zinc transport process, a mammalian cell culture model was utilized to investigate the influence of zinc status on the kinetics of zinc uptake. Culturing conditions were optimized to induce moderate zinc deficiency and zinc excess while still sustaining the general health of the cells. Cells were grown in (1) control medium of 10% fetal bovine serum (FBS) in minimum essential medium (MEM; 5.0 micromol zinc/L), (2) low zinc medium (10% dialyzed FBS in MEM; 1.5 micromol zinc/L), or (3) zinc back medium (10% dialyzed FBS in MEM with zinc added as ZnCl(2); 5.0 micromol zinc/L). Bovine pulmonary artery endothelial cells (BPAEC), porcine aortic endothelial cells (PAEC), and porcine venous endothelial cells (PVEC) were evaluated as to their responsiveness to our zinc-deficient conditions. Zinc uptake was faster (P < 0.001) in all three cell types when they were grown in low zinc medium compared with controls; the increases were 32% in PAEC, 37% in PVEC, and 66% in BPAEC. Further kinetic analysis with BPAEC demonstrated a 31% increase (P < 0.05) in the maximum rate of zinc uptake (Jmax) grown in low zinc medium compared with controls, but no difference (P > 0.05) between the low zinc group and the control group in the concentration at which uptake was half-maximal (K). Zinc uptake into BPAEC grown in excess zinc conditions was not different (P > 0.05) unless the medium contained greater than 50 micromol zinc/L. In conclusion, BPAEC increased their ability for zinc uptake in response to moderate zinc deficiency, but did not change their kinetics of zinc uptake during moderate zinc excess.  相似文献   

6.
Growth of Methanospirillum hungatii GP1 as determined by optical density measurement wsa comparable to growth assessed by cell dry weight, ribonucleic acid content, and deoxyribonucleic acid content. Cultivation of M. hungatii on synthetic medium containing mineral salts, vitamins, and acetic acid indicated that, on a dry weight basis, cell constituents such as protein (71%), ribonucleic acid (15.8%), deoxyribonucleic acid (1.6%), and total carbohydrate (3.2%) did not vary significantly with the growth phase. Cells grown in the synthetic medium supplemented with yeast extract and tryptone had slightly higher protein content (76%), but the concentrations of the other cell constituents were similar and did not fluctuate much during growth. Nitrogen limiting growth resulted in somewhat lower ribonucleic acid content as well as slightly higher protein content than that in cells grown in nonlimiting medium. Methanospirillum hungatii did not accumulate any of the commonly known reserve materials under nitrogen or carbon and hydrogen limiting growth.  相似文献   

7.
Fetal distal lung epithelial (FDLE) cells exposed to a postnatal O(2) concentration of 21% have higher epithelial Na(+) channel (ENaC) mRNA levels and Na(+) transport relative to FDLE cells grown in a fetal O(2) concentration of 3%. To investigate the mechanism of this process, FDLE monolayers were initially cultured in 3% O(2), and then some were switched to a 21% O(2) environment. Incubation of FDLE cells with the iron chelator deferoxamine, CoCl(2), NiCl(2), or an inhibitor of heme synthesis prevented or diminished the O(2) induction of amiloride-sensitive short-circuit current in FDLE cells. Similarly, defer- oxamine and cobalt prevented O(2)-induced ENaC mRNA expression. Exposure of FDLE cells grown under hypoxic conditions to carbon monoxide increased both ENaC mRNA expression and amiloride-sensitive short-circuit current. We therefore concluded that induction of ENaC mRNA expression and amiloride-sensitive Na(+) transport in FDLE cells by a physiological increase in O(2) concentration seen at birth requires iron and heme proteins.  相似文献   

8.
To verify the possible involvement of lipids and several other compounds including hydrogen peroxide (H(2)O(2)) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in the response of Hordeum vulgare to early potassium deprivation, plants were grown in hydroponic conditions for 30d with a modified Hewitt nutrient solution containing 3mM K(+). They were then incubated for increasing periods of time ranging from 2 to 36h in the same medium deprived of K(+). In contrast to leaves, root K(+) concentration showed its greatest decrease after 6h of treatment. The main lipids of the control barley roots were phospholipids (PL), representing more than 50% of the total lipids. PL did not change with treatment, whereas free sterols (FS) decreased following K(+) deprivation, showing a reduction of approximately 17% after 36h. With respect to the individual PL, 30h K(+) deprivation led to a reduction in phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) levels, whereas phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidic acid (PA) levels increased. The maximum PA accumulation and the highest phospholipase D (PLD) activation, estimated by an accumulation of phosphatidylbutanol (PtBut), were observed after 24h of K(+) starvation. At the root level, H(2)O(2) showed the maximum value after 6h of incubation in -K solution. In parallel, G3PDH activity reached its minimum. On the basis of a concomitant stimulation of PLD activity and, consequently, PA accumulation, enhancement of H(2)O(2) production, and inhibition of G3PDH activity, we suggest a possible involvement of these three compounds in an early response to K(+) deprivation.  相似文献   

9.
Dilute cultures of wild-type Escherichia coli K12 and of derivatives impaired in one or other Enzyme-II component of the glucose phosphotransferase system were grown in continuous culture under glucose limitation. Cells harvested from the chemostat took up [U-14C]glucose from 0.1 mM solutions at rates directly related to the rates at which those cells had grown; the activity of the phosphotransferase system in those cells, rendered permeable with optimal accounts of toluene, parallels the ability of the cells to take up glucose. The capacity of these systems was rate-limiting for growth under the negligibly low glucose concentration in the chemostat, but was adequate to account for the stimulation of respiration observed when the cells were presented suddenly with excess glucose.  相似文献   

10.
This study examines certain membrane-related aspects of oxygen poisoning in Escherichia coli K1060 (fabB fadE lacI) and its parent strain, K-12 Ymel. Cells were grown to exponential or stationary phase in a minimal medium and exposed to air plus 300 lb/in2 of O2 as a suspension in minimal salts. After an initial lag, both strains lost viability with apparent first-order kinetics. Hypebaric oxygen was more toxic to cells harvested during the exponential phase of growth than to cells harvested from the stationary phase of growth for both strains K-12 Ymel and K1060. Control suspensions exposed to air plus 300 lb/in2 of N2 did not lose viability during a 96-h exposure. The sensitivity of the unsaturated fatty acid auxotroph, strain K1060, to hyperbaric oxygen increased as the degree of unsaturation of the fatty acid supplement increased. Cells grown with a cyclopropane fatty acid (9,10=methylenoctadecanoate) were the most resistant; cells grown with a monounsaturated fatty acid (oleate) were intermediate; and those grown with polyunsaturated fatty acids (linoleate and linolenate) were most sensitive to hyperbaric oxygen. The parent strain, K-12 Ymel, lost viability in hyperbaric oxygen most similarly to strain K1060 supplemented with oleate. To determine the relative effect of hyperbaric oxygen on the survival of E. coli with saturated membranes, substrains of K1060 were selected for growth on 12-methyltetrade-canoate or on 9 or 10-monobromostearate. Substrains grown with a saturated fatty acid supplement were equally or more sensitive to hyperbaric oxygen than when the same substrains were grown with a cyclopropane fatty acid supplement. The lipid acyl chain composition was determined in E. coli K1060 before and after exposure to hyperbaric oxygen or hyperbaric nitrogen. The proportion of nonsaturated acyl chain lipid of either the oleate- or the 9,10-methyleneoctade-canoate-supplemented K1060 remained unchanged after hyperbaric gas exposure. In strain K1060 supplemented with linoleate and grown to stationary phase, however, the relative unsaturated acyl chain content after hyperbaric exposure decreased in both gases. This finding prompted an investigation of the role of lipid oxidation in hyperbaric oxygen toxicity. Assays of potential lipid oxidation products were performed with linoleate-grown cells. The lipid hydroperoxide and peroxide content of the lipid extract increased by 6.9 times after 48 h of air plus 300 lb/in2 of O2; malondialdehyde and fluorescent complex lipid oxidation products showed much smaller or no changes. Lipid extracts from hyperbaric oxygen-exposed cells were not toxic to viable E. coli K1060, nor did they increase the rate of loss of viability in cells simultaneously exposed to hyperbaric oxygen. Linoleic acid hydroperoxide at 1.0 mM had no effect on the viability of E. coli K-12 Ymel and only marginally decreased the viability of E. coli K1060 supplemented with linoleate. We conclude that the kinetics of oxygen toxicity in E...  相似文献   

11.
At a concentration of 10(-6)m, nigericin and monactin inhibited growth of Streptococcus faecalis, and the inhibition was reversed by addition of excess K(+). In the presence of certain antibiotics, the cells exhibited increased permeability to certain cations; internal Rb(+) was rapidly lost by exchange with external H(+), K(+) Rb(+), and, more slowly, with Na(+) and Li(+). No effect was observed on the penetration of other small molecules. Cation exchanges induced by nigericin and monactin were metabolically passive and apparently did not involve the energy-dependent K(+) pump. When the cells were washed, the cytoplasmic membrane recovered its original impermeability to cations. By use of monactin, we prepared cells whose K(+) content had been completely replaced by other cations, and the metabolic characteristics of K(+)-depleted cells were studied. Cells containing only Na(+) glycolyzed almost as well as did normal ones and, under proper conditions, could accumulate amino acids and orthophosphate. These cells also incorporated (14)C-uracil into ribonucleic acid but incorporation of (14)C-leucine into protein was strictly dependent upon the addition of K(+). When K(+) or Rb(+) was added to sodium-loaded cells undergoing glycolysis, these ions were accumulated by stoichiometric exchange for Na(+). From concurrent measurements of the rate of glycolysis, it was calculated that one mole-pair of cations was exchanged for each mole of adenosine triphosphate produced.  相似文献   

12.
Suspensions of cells of a marine pseudomonad washed with 0.05 m MgSO(4) showed an immediate increase in optical density (first-phase optical change) when the salt concentration of the suspending medium was increased; a subsequent slow decrease in optical density (second-phase optical change) occurred if K(+) was present. The rate of the second-phase change was similar to the rate of uptake of (42)K(+) by the cells. Glutamate increased the rate and extent of the second-phase change and produced a parallel increase in the rate and extent of uptake of (42)K(+). Citrate increased the extent of the second-phase change in cells adapted to oxidize citrate but not in unadapted cells. Adapted, but not unadapted, cells accumulated (14)C-citrate. The nonmetabolizable alpha-aminoisobutyric acid (AIB) also increased the extent of the second-phase change under conditions leading to the uptake of (14)C-AIB by the cells. Cells maintained in a salt solution optimal for the retention of intracellular solutes were found to contain 0.184 m K(+). In the same salt solution, cells preloaded with (42)K(+) retained the isotope, but they lost it rapidly when suspended in 0.05 m MgSO(4). The second-phase changes can be accounted for by the energy-dependent accumulation in an osmotically active form of K(+) and other metabolites by cells depleted of intracellular solutes.  相似文献   

13.
1. 5-Aminolaevulinate synthetase was detected in extracts of the non-photosynthetic bacterium Micrococcus denitrificans. 2. Activity is high in cells grown anaerobically in a defined nitrate medium, but is low in cells grown in an iron-deficient medium, and in cells grown aerobically. 3. Aminolaevulinate synthetase was purified extensively; it has a molecular weight of about 68000; apparent K(m) values for glycine, succinyl-CoA and pyridoxal phosphate are 12mm, 10mum and 11mum respectively; 2mum-haemin and 14mum-protoporphyrin inhibit by 50%. 4. The low activity of aminolaevulinate synthetase in iron-deficient cells increases on adding iron salts to cells only under conditions where protein synthesis can occur. 5. In defined nitrate medium with a high Ca(2+) concentration anaerobic growth yield is higher, but aminolaevulinate synthetase activity is lower than in cells grown in the medium with a low Ca(2+) concentration. In medium made from AnalaR constituents, growth yield is low and aminolaevulinate synthetase activity is high even in the presence of high concentrations of Ca(2+); on adding Cu(2+) (0.1mum) to the medium growth yield and aminolaevulinate synthetase activity become the same as in non-AnalaR medium. 6. Cells incubated under conditions where protein synthesis does not occur but where electron transport does, lose their aminolaevulinate synthetase activity rapidly. 7. The activities of aminolaevulinate dehydratase and succinic thiokinase do not change under any of the conditions of growth examined. 8. The possible mechanisms controlling aminolaevulinate synthetase activity and the role of this enzyme in controlling the synthesis of haem in this organism are discussed.  相似文献   

14.
Skleryk RS  So AK  Espie GS 《Planta》2002,214(4):572-583
We have examined the effect of inorganic and organic carbon nutrition on the physiological expression of HCO3- transport and the CO2-concentrating mechanism (CCM) in the nutritionally versatile cyanobacterium Chlorogloeopsis sp. ATCC 27193. Cells grown under photoautotrophic conditions in the presence of limiting or replete levels of inorganic carbon (Ci), or grown under mixotrophic (light) or chemoheterotrophic (dark) conditions in the presence of sucrose retained both active CO2 and Na(+)-independent HCO3- transport activity. However, two distinct effects on the kinetic properties of HCO3- transport were observed, which segregated on the basis of phototrophic and chemoheterotrophic growth in the dark. In the former, the apparent substrate affinity of the HCO3- transport system (K0.5) varied (12-fold) in response to the growth Ci or mixotrophy while the maximum rate of HCO3- transport was approximately constant. In the latter case, the K0.5 value was unchanged from the starting value (35 microM) of Ci-limited photoautotrophic cells used to initiate the dark-grown cultures, but transport capacity declined 3-fold. Modulation of the K0.5 (HCO3- transport) value required light. Cellular carboxysome content was unaffected by growth under any of the regimes employed and these structures were the predominant location of ribulose-1,5-bisphosphate carboxylase/oxygenase, as indicated by immunogold electron microscopy. Mixotrophic and chemoheterotrophic growth resulted in a diminished ability to concentrate Ci internally and a reduction in Ci accumulation ratios at low external Ci concentrations. The relationship between photosynthetic carbon fixation and the internal Ci pool varied by 2-fold, with high-Ci-grown cells being the most efficient and mixotrophically grown cells the least, indicating that there was limited capacity to modulate this relationship in response to changes in carbon nutrition. Within broad limits this relationship appeared to be a fixed trait of the strain and an important factor in determining growth rate.  相似文献   

15.
Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. IV. Degradation of biotin, oxybiotin, and desthiobiotin by Lactobacillus casei. J. Bacteriol. 92:925-930. 1966.-Lactobacillus casei degrades biotin when it is present in excess to products not utilizable for growth by L. plantarum or Saccharomyces cerevisiae. Degrading activity was initiated in the early stationary phase and was controlled by the pH of the medium. Nonproliferating cells, grown previously in excess biotin for 40 hr, metabolized oxybiotin and desthiobiotin as well as biotin. Cells grown in low biotin, or in excess biotin for 20 hr, did not degrade either analogue. Oxybiotin was 50% as active as biotin for growth, whereas desthiobiotin acted as a competitive inhibitor. Cells grown in excess biotin for 40 hr, but not 20 hr, overcame the inhibitory effect of desthiobiotin, when subcultured to media containing a normally inhibitory concentration of the analogue. Moreover, the level of desthiobiotin dropped rapidly during the first 4 to 6 hr before growth ensued. The data indicate that growth in excess biotin enables L. casei to degrade desthiobiotin and, thereby, to overcome the inhibitory effect of the analogue.  相似文献   

16.
The intracellular level of potassium (K(+)) in Escherichia coli is regulated through multiple K(+) transport systems. Recent data indicate that not all K(+) extrusion system(s) have been identified (15). Here we report that the E. coli Na(+) (Ca(2+))/H(+) antiporter ChaA functions as a K(+) extrusion system. Cells expressing ChaA mediated K(+) efflux against a K(+) concentration gradient. E. coli strains lacking the chaA gene were unable to extrude K(+) under conditions in which wild-type cells extruded K(+). The K(+)/H(+) antiporter activity of ChaA was detected by using inverted membrane vesicles produced using a French press. Physiological growth studies indicated that E. coli uses ChaA to discard excessive K(+), which is toxic for these cells. These results suggest that ChaA K(+)/H(+) antiporter activity enables E. coli to adapt to K(+) salinity stress and to maintain K(+) homeostasis.  相似文献   

17.
Salt stress is one of the most serious environmental factors limiting the productivity of crop plants. To understand the molecular basis for salt responses, we used mutagenesis to identify plant genes required for salt tolerance in tomato. As a result, three tomato salt-hypersensitive (tss) mutants were isolated. These mutants defined two loci and were caused by single recessive nuclear mutations. The tss1 mutant is specifically hypersensitive to growth inhibition by Na(+) or Li(+) and is not hypersensitive to general osmotic stress. The tss2 mutant is hypersensitive to growth inhibition by Na(+) or Li(+) but, in contrast to tss1, is also hypersensitive to general osmotic stress. The TSS1 locus is necessary for K(+) nutrition because tss1 mutants are unable to grow on a culture medium containing low concentrations of K(+). Increased Ca(2)+ in the culture medium suppresses the growth defect of tss1 on low K(+). Measurements of membrane potential in apical root cells were made with an intracellular microelectrode to assess the permeability of the membrane to K(+) and Na(+). K(+)-dependent membrane potential measurements indicate impaired K(+) uptake in tss1 but not tss2, whereas no differences in Na(+) uptake were found. The TSS2 locus may be a negative regulator of abscisic acid signaling, because tss2 is hypersensitive to growth inhibition by abscisic acid. Our results demonstrate that the TSS1 locus is essential for K(+) nutrition and NaCl tolerance in tomato. Significantly, the isolation of the tss2 mutant demonstrates that abscisic acid signaling is also important for salt and osmotic tolerance in glycophytic plants.  相似文献   

18.
Aerobic microbial growth at low oxygen concentrations   总被引:8,自引:3,他引:5       下载免费PDF全文
Sterilizable membrane probes were used to study the relation between oxygen concentration and respiration rate in Candida utilis growing on acetate. When the organism was grown in a continuous fermentor at various dissolved oxygen concentrations (0.23 x 10(-6) to 32 x 10(-6)m), with time allowed for full adaptation to each oxygen concentration, the relationship between oxygen concentration and growth rate simulated Michaelis-Menten behavior, giving an apparent K(m) for oxygen of 1.3 x 10(-6)m. When respiration rate was measured at various oxygen concentrations without allowing time for adaptation, it was found that the respiration rate was directly proportional to O(2) concentration at low O(2) concentrations, and independent of O(2) concentration at high O(2) concentrations. Transition from one type of behavior to the other was fairly abrupt. The respiration rate in the presence of excess oxygen depended on the O(2) concentration at which the cells were grown, but the rate at low O(2) concentrations did not. There was evidence that, at low oxygen concentrations, oxygen diffusion through the cell substance limits respiration rate, at least in part.  相似文献   

19.
The growth constant and Y (sucrose) (grams of cells per mole of sucrose) for NH(3)-grown cultures of Clostridium pasteurianum were 1.7 times those of N(2)-grown cultures, whereas the rate of sucrose utilized per gram of cells per hour was similar for both conditions. The Y (sucrose) of chemostat cultures grown on limiting NH(3) under argon at generation times equal to those of N(2)-fixing cultures was less than that of cultures grown on excess NH(3), but cells of NH(3)-limited cultures contained the N(2)-fixing system in high concentration. The concentration of the N(2)-fixing system in whole cells, when measured with adenosine triphosphate (ATP) nonlimiting, was more than twofold greater than the amount needed for the N(2) actually fixed. Thus, energy production from sucrose, and not the concentration of the N(2)-fixing system nor the maximal rate at which N(2) could be fixed, was the limiting factor for growth of N(2)-fixing cells. Either NH(3) or some product of NH(3) metabolism partially regulated the rate of sucrose metabolism since, when cultures fixing N(2), growing on NH(3), or growing on limiting NH(3) in the absence of N(2) were deprived of their nitrogen source, the rate of sucrose catabplism decreased. Calculations showed that the rate of ATP production was the growth rate-limiting factor in cells grown on N(2), and that the increased sucrose requirement of N(2)-fixing cultures in part reflected the energy demand of N(2) fixation. Calculations indicated that whole cells require about 20 moles of ATP for the fixation of 1 mole of N(2) to 2 moles of NH(3).  相似文献   

20.
Lactic streptococci, classically regarded as homolactic fermenters of glucose and lactose, became heterolactic when grown with limiting carbohydrate concentrations in a chemostat. At high dilution rates (D) with excess glucose present, about 95% of the fermented sugar was converted to l-lactate. However, as D was lowered and glucose became limiting, five of the six strains tested changed to a heterolactic fermentation such that at D = 0.1 h(-1) as little as 1% of the glucose was converted to l-lactate. The products formed after this phenotypic change in fermentation pattern were formate, acetate, and ethanol. The level of lactate dehydrogenase, which is dependent upon ketohexose diphosphate for activity, decreased as fermentation became heterolactic with Streptococcus lactis ML(3). Transfer of heterolactic cells from the chemostat to buffer containing glucose resulted in the nongrowing cells converting nearly 80% of the glucose to l-lactate, indicating that fine control of enzyme activity is an important factor in the fermentation change. These nongrowing cells metabolizing glucose had elevated (ca. twofold) intracellular fructose 1,6-diphosphate concentrations ([FDP](in)) compared with those in the glucose-limited heterolactic cells in the chemostat. [FDP](in) was monitored during the change in fermentation pattern observed in the chemostat when glucose became limiting. Cells converting 95 and 1% of the glucose to l-lactate contained 25 and 10 mM [FDP](in), respectively. It is suggested that factors involved in the change to heterolactic fermentation include both [FDP](in) and the level of lactate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号