首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响   总被引:2,自引:0,他引:2  
【背景】亚硝酸盐是虾类集约化养殖过程中最常见的毒性污染物之一,研究亚硝酸盐胁迫对罗氏沼虾血细胞的毒性以及抗氧化酶在抗胁迫防御中的作用,能够为罗氏沼虾养殖过程中的亚硝酸盐中毒防治提供理论参考。【方法】以不同浓度(0、1、5和10 mg·L~(-1))的亚硝态氮(NO_2~--N)对罗氏沼虾进行胁迫,于胁迫后的0、6、12、24和48 h取样,应用流式细胞术检测血细胞活性氧(ROS)含量和细胞凋亡率,同时测定血细胞总数(THC)和胞内抗氧化酶活力。【结果】1 mg·L~(-1)NO_2~--N在48 h内对血细胞ROS含量、凋亡率和THC均无显著影响。5 mg·L~(-1)NO_2~--N胁迫24 h,血细胞ROS含量显著上升,THC显著下降,胁迫48 h凋亡率显著提高。10 mg·L~(-1)NO_2~--N胁迫6 h,血细胞ROS含量和凋亡率均显著上升,胁迫12 h THC显著下降。血细胞的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)的活力均不同程度地被NO_2~--N胁迫所诱导,CAT活力主要在胁迫前期提高,而GPx活力在胁迫后期提高。【结论与意义】亚硝酸盐存在浓度和时间毒性效应,一定浓度的亚硝酸盐会诱导虾血细胞产生ROS,这些ROS的过量产生诱导了血细胞发生凋亡,继而导致THC下降,这一氧化胁迫过程可能是亚硝酸盐对罗氏沼虾产生细胞毒性的重要机制之一。抗氧化酶活力的诱导表明抗氧化酶在亚硝酸盐胁迫过程中发挥防御作用。  相似文献   

2.
Sea bass with approximate average weights of 5 and 20 g were treated against Ceratothoa oestroides infection with: (i) medicated pellets of diflubenzuron PC90 at a dosage of 3 mg kg?1 body weight (BW) per day for 14 days. Lice were counted at the beginning of treatment and 19 days after treatment. The drug cleared all lice in the treated group; in the control group, infection remained high 30 days after beginning the experiment. It was concluded that medicated pellets containing 3 mg kg?1 BW diflubenzuron effectively cleared pre‐adult and adult stages of the isopod parasite over a 14‐day period. No adverse effects were recorded in treated sea bass during the trials and no reinfection occurred 15 days after end of the treatment. (ii) Deltamethrin by means of bath treatments in infected sea bass kept in experimental tanks at 20°C. Before treatment, toxicity on healthy fish was preliminarily assessed by testing five fish from each size group at concentrations of 30, 10, 5, 3, 1, 0.1, 0.05 and 0.01 mg L?1 for 30 min. The therapeutic concentrations tested were: 10, 5, 3, 0.15, 0.1, and 0.05 μg L?1 and assessed at 1, 24 and 48 h. Best results were achieved with the 10 μg L?1 (0.01 mg L?1) dose, where prevalence was reduced from 100 to 0% over 24 h in both large and small fish. No parasite recovery was observed at 48 h. The dose of 5 μg L?1 reduced prevalence from 100 to 11.7% and to 0% for small and large fish, respectively. Finally, with the 3 μg L?1 dose, prevalence was reduced from 100 to 37.5% (small fish) and to 13.3% (large fish). Lower doses were ineffective on the parasites at either 24 or 48 h.  相似文献   

3.
This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus (200.2 ± 51.1 g) in water containing CaSO4 after a 4‐h transportation at concentrations of: 0, 75, 150, and 300 mg L?1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after packaging (118.2 ± 14.2 ng ml?1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml?1). Fish kept at 150 mg L?1 CaSO4 reached the pre‐transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L?1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L?1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L?1 CaSO4. Mean corpuscular volume increased in 75 mg L?1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses.  相似文献   

4.
The effects of soaking seed in 2-chloroethylphosphonic acid (CEPA) for 24 or for 48 h on the cumulative 5-day seedling growth ofCucumis sativus L. (cucumber) andPisum sativum L. (peas) were studied. Each cucumber seed absorbed an average of 0.015 ml of CEPA solution, while pea seed absorbed 0.365 ml, over a 24 h period. In cucumber, 240 mg l?1 CEPA concentration decreased radicle length by 23%, regardless of soaking duration. The same concentration increased radicle weight in a 24 h soaking duration, but decreased radicle weight when soaking was for 48 h. At 48 h, CEPA concentrations of 0.24 and 2.4 mg l?1 increased plumule growth by 26%. In peas, the 240 mg l?1 decreased the length and the weight of both the radicle and the plumule in a 48 h soaking duration, but had no significant effect at a 24 h soaking. At the low concentration of 0.24 mg l?1, seedling growth was stimulated by over 30%. Cucumber was 3 times more efficient than peas in the utilization of CEPA for seedling growth, in terms of total fresh weight of seedling per microgram of CEPA absorbed: 1 127 and 274 mg μg?1 CEPA in cucumber and peas respectively. Extrapolative calculation, using cucumber responses as standard, suggests from this seedling study that about 12 mg l?1 CEPA is likely to stimulate growth and/or yield in sprayed pea plants.  相似文献   

5.
Clove oil can be used as an anaesthetic in the handling of marine and freshwater fish. Few studies report on its use for periods up to 48 h, for example, under long‐distance transport conditions. This study tested the effect of different clove oil concentrations for 1–48 h on recovery and survival of the cichlid Haplochromis obliquidens, an ornamental fish species endemic to Lake Victoria. Haplochromis obliquidens were anaesthetized for 1 h using 5–25 μl L?1 clove oil. There was no correlation between clove oil concentration and post‐anaesthesia recovery time (P = 0.15). On average, fish recovered within 9.5 ± 2 min, and no fish died within 24 h after recovery. Results from exposure of fish to 18–20 μl L?1 clove oil for up to 48 h suggested a narrow margin of safety as this concentration range induced mortality. At 18 μl L?1 recovery times ranged from 3 to 43 min between 24 and 36 h exposure, while fish exposed longer than 36 h recovered within 1–10 min, or within 1–2 min after 44–48 h. At the end of a 48‐h transport experiment total ammonia levels were higher in transport water containing anaesthetized fish than for non‐anaesthetized fish (1.65 ± 0.19 and 0.54 ± 0.08 mg L?1 NH + NH3, respectively). The combined use of clove oil and the selective ammonium ion exchanger zeolite was considered feasible as ammonia levels could be reduced by up to 82% compared to control bags without zeolite.  相似文献   

6.
The 96‐h LC50 (median lethal concentration, LC50) tests were conducted using four different sizes of yellow catfish Pelteobagrus fulvidraco to provide primary information on the sensitivity of this species to elevated ammonia and/or nitrite, and to determine if the sensitivity is mediated by size under the same conditions. The results showed that 96‐h LC50 of fish weighing 0.034 ± 0.002, 0.296 ± 0.049, 3.52 ± 0.95 and 32.96 ± 5.75 g to total ammonia nitrogen‐N was 24.96, 35.85, 47.44 and 68.79 mg L?1, respectively; un‐ionized ammonia nitrogen‐N was 0.34, 0.49, 0.65 and 0.94 mg L?1 in test conditions of pH 7.42 and 23°C; and that nitrite nitrogen‐N was 69.06, 97.23, 133.61 and 196.05 mg L?1 in test conditions of pH 7.58 and 23°C, respectively. The NOEL (No Observable Effect Level) of fish (body weight from 0.03 to 30 g) to ammonia and nitrite was 2.25–6.22 mg L?1 total ammonia nitrogen‐N, 0.03–0.10 mg L?1 un‐ionized ammonia nitrogen‐N in test conditions of pH 7.42 and 23°C, and 6.27–17.68 mg L?1 nitrite nitrogen‐N in test conditions of pH 7.58 and 23°C, respectively. These results indicate that the susceptibility of this fish to total ammonia or nitrite was reduced with increasing size, and that a dose‐dependent relationship might exist between them. The 96‐h LC50 and NOEL of different sizes of fish to total ammonia, un‐ionized ammonia and nitrite would be important to know for water quality standards in yellow catfish aquaculture.  相似文献   

7.
In order to evaluate the effects of immersion marking with calcein (CAL) and alizarin red S (ARS) on growth and mortality of juvenile bighead carp Aristichthys nobilis, and assess mark quality in otoliths, scales, and fin rays, CAL from 50 to 200 mg L?1 and ARS from 150 to 300 mg L?1 concentrations were used. With the exception of non‐lateral line scales from 50 mg L?1 CAL treatments, immersion for 24 h produced detectable marks in sagittae, lateral line and non‐lateral line scales, and fin rays (dorsal, pectoral, ventral, anal, and caudal) at 100 days post‐marking. Detectable fluorescent marks in sagittae were readily observed at concentrations of 150–200 mg L?1 CAL or 150–300 mg L?1 ARS. Marks were poorly visible in all non‐lateral line scales from both CAL‐ and ARS‐treated groups. Fluorescent marks were readily detected in lateral line scales at 100–200 mg L?1 CAL or 150–300 mg L?1 ARS, and in fin rays at 150–200 mg L?1 CAL or 150–300 mg L?1 ARS. In particular, optimal marks were observed at the highest concentrations investigated in sagittae (300 mg L?1 ARS), lateral line scales (150–200 mg L?1 CAL or 250–300 mg L?1 ARS), and fin rays (200 mg L?1 CAL or 250–300 mg L?1 ARS). However, fluorescent marks visible to the naked eye were not produced by any of the CAL or ARS treatments in sagittae, scales, or fin rays during this experiment. In addition, there was no significant difference on survival and growth of marked fish compared to controls throughout the experiment (P > 0.05).  相似文献   

8.
Administration of flumequine and oxolinic acid to turbot, Scophthalmus maximus L., by bath resulted in significant levels of both drugs in the muscle tissue. Bath treatment using 150 mg L?1 of flumequine and 200 mg L?1 of oxolinic acid for 72 h gave muscle concentrations of 10.2 and 6.2 μg g?1, respectively. Excretion of both antibacterials was rapid, reaching concentrations of 0.8 and 0.9 μg g?1, respectively, for flumequine and oxolinic acid 24 h after the end of treatment. At day 3 post‐treatment the concentration of flumequine was below the limit of quantitation (0.1 μg g?1) of the analytical method. Based on a minimum inhibitory concentration (MIC) of 0.0625 μg ml?1 for susceptible strains, bath treatment maintain muscle levels in excess of 0.5 μg ml?1, corresponding to eight times the MIC‐value for approximately 118 h for oxolinic acid and 104 h for flumequine.  相似文献   

9.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

10.
The aim of the present study is to test the role of intracellular nitrite in external nitrite suppressing algal growth. We examined the growth of Microcystis aeruginosa at different nitrite levels under high nitrate conditions and without nitrate conditions. There were higher intracellular nitrite and lower Pmchla, Rd chla, αchl, maximum cell density and specific growth rate in high nitrate group than nitrate absence group at 5 mg NO2?‐N L?1. At 10 and 15 mg NO2?‐N L?1, Pmchla, Rd chla, αchl, maximum cell densities and specific growth rates in the high nitrate group became higher than those of the nitrate absence group, while a lower intracellular nitrite in the high nitrate group than nitrate absence group was observed. In addition, the intracellular nitrite and the growth of M. aeruginosa in the high nitrate group did not change from 5 to 10 mg NO2?‐N L?1. In the nitrite uptake experiment, with nitrite concentration increasing from 5 to 15 mg NO2?‐N L?1, maximum nitrite uptake rate of alga increased, and half‐saturation constant of alga decreased. These results indicate that external nitrite inhibited algal growth through stimulating intracellular nitrite rise, which resulted from overexpression of nitrite transporter.  相似文献   

11.
The objectives of this experiment were to (i) determine the efficacy of essential oils of clove (CO) and Lippia alba (EOLA) to induce deep anaesthesia in juvenile specimens (49.0 ± 6.2 g body mass, 16.6 ± 0.8 cm; n = 8 per treatment) of meagre (Argyrosomus regius); and (ii) study the feasibility of these substances, together with 2‐phenoxyethanol (2‐PHE), as potential sedatives [low concentration: (i) EOLA: 12 mg L?1; (ii) CO: 1 mg L?1; and (iii) 2‐PHE: 33 mg·L ?1; n = 8 per treatment] for live fish transport of this species. All test were performed at a constant temperature (18°C). Thus, the main primary stress indicator (plasma cortisol) and secondary factors (plasma metabolites) were evaluated. In addition, growth hormone (GH) mRNA expression was also evaluated in the pituitary gland. The results indicated that EOLA is considered to be effective for deep anaesthesia when the concentration is close to 160 mg L?1, while CO produces the same effect when lower concentrations are added (40–50 mg L?1). Regarding sedative concentrations, a significant ~3‐fold increase in plasma cortisol levels was detected in the EOLA group when compared to control specimens. In addition, glucose levels were not reduced and significantly increased (~1.6‐fold) for 2‐PHE in relation to the control fish. None of the anaesthetics promoted a significant difference for GH expression with respect to the control group, but a significant ~2‐fold increase for 2‐PHE treatment with respect to the EOLA exposition was found in this gene expression. Results show that none of the anaesthetics analysed, at least in the ranges of concentrations used in this study (EOLA 12 mg L?1, CO 1 mg L?1, 2‐PHE 33 mg L?1), are recommended for live fish transport, as shown by the absence of inhibition on the stress parameters assessed.  相似文献   

12.
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L?1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L?1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L?1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L?1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L?1 IAA under As(III) or DMA treatment and at 50 mg L?1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L?1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.  相似文献   

13.
A deltamethrin containing insecticide formulation (Decis®) was evaluated for its toxic potential in developing chick embryos. For the present study, three water emulsified concentrations of Decis® (12.5 mg L?1, 25 mg L?1, and 50 mg L?1) were used. Fertilized eggs of Gallus domesticus were immersed in these three concentrations of the insecticide for 60 min at 37°C on day 0 of incubation and kept for incubation till embryonic day 7. Recovered embryos were evaluated for teratogenic and biochemical changes. The results revealed that administration of Decis® at its lower concentrations (12.5 mg L?1 and 25 mg L?1) did not show any significant teratological changes but the significant number of abnormal survivors was observed at 50 mg L?1 of dose concentration when compared with vehicle-treated control. Among biochemical changes, total glycogen and RNA contents of embryos was significantly decreased at 25 mg L?1 and 50 mg L?1 of Decis® concentrations. Similarly, significant alteration (p ≤ .05) was observed in alanine transaminase activity at 50 mg L?1 concentration of Decis®. Thus, the present study concluded that the no-effect-level for developmental toxicity for Decis® is below the concentration of 25 mg L?1 under standard laboratory conditions.  相似文献   

14.
In vitro plantlets of sugarcane cultivar NCo310 were maintained in slow growth conditions at both 18 and 24°C and on four semi-solid media: SG1—Murashige and Skoog (MS) salts and vitamins with 20 g L?1 sucrose, SG2—½ MS with 10 g L?1 sucrose, SG3—MS with 20 g L?1 sucrose and 1 mg L?1 abscisic acid (ABA), and SG4—½ MS with 10 g L?1 sucrose and 1 mg L?1 ABA. After 8, 12, 24, 36, and 48 mo shoot multiplication rates were recorded, shoots were removed from storage and subcultured every 2 wk on SG1 with 0.015 mg L?1 kinetin and 0.1 mg L?1 benzyl aminopurine for 2 mo. At 18°C, all media supported storage for 48 mo with subculturing every 12 mo. Shoot multiplication post-retrieval was significantly higher on the SG2 medium compared with the non-stored control (362 ± 84 and 126 ± 26 shoots per recovered shoot after 2 mo, respectively). In addition, shoots could be maintained for 48 mo on SG2 medium with one subculture without compromising post-storage multiplication ability. At 24°C, storage on all four media supported recovery and multiplication of shoots for 8 mo and only SG2 medium facilitated survival for 12 mo. There was no advantage to incorporating ABA into the storage media, regardless of the temperature and storage time. Cryopreservation of cultivar NCo376 in vitro-derived shoot meristems using the V-cryo-plate method demonstrated that the sucrose concentration in the loading solution (0.8–1.8 M) had no significant effect on survival of the meristems, which ranged from 41.7 ± 4.8 to 69.4 ± 10%.  相似文献   

15.
The L‐arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L‐arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light‐dark cycle. Animals were injected s.c. with saline, 2 mg/kg L‐arginine (a NO precursor), 75 mg/kg L‐NG‐nitroarginine methyl ester (L‐NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p‐benzoquinone (PBQ)‐induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L‐arginine or L‐NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time‐dependent differences in PBQ‐induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L‐NAME, methylene blue, or sodium nitroprusside, but not saline or L‐arginine. These results suggest that components of L‐arginine/NO/cGMP pathway exhibit biological time‐dependent effects on visceral nociceptive process.  相似文献   

16.
The immediate effect of zinc (Zn) and hydrogen peroxide (H2O2) in Chara braunii was analyzed in short-time exposure experiments. The exposure concentrations were 12.3, 18.4, and 24.5 μmol L?1 H2O2, 12, 60, and 120 mg L?1 Zn, and 12.3 μmol L?1 H2O2 + 12 mg L?1 Zn, 12.3 μmol L?1 H2O2 + 60 mg L?1 Zn, and 18.4 μmol L?1 H2O2 + 12 mg L?1 Zn. The stress response of C. braunii was analyzed by measuring photosynthetic photosystem II activity, chlorophyll a and b and carotenoid contents, the H2O2 concentration, and antioxidant enzyme activities of ascorbic peroxidase, catalase, and guaiacol peroxidase. The short-term addition of Zn reduced pigment contents in C. braunii. Chlorophyll a and b and carotenoid contents in H2O2-exposed C. braunii were as high as in control plants. Photosynthesis was reduced in H2O2-treated C. braunii and the short-term addition of Zn did not affect the electron transport rate. H2O2 concentration and antioxidant enzyme activities in C. braunii were not significantly different between control and exposed plants. Trends of enzymatic adaptation were described: the H2O2-induced stress response was characterized by increased antioxidant enzyme activities, whereas Zn inactivated catalase in C. braunii.  相似文献   

17.
Garlic, an important flavoring agent and a medicinally useful plant, can take up selenium from its immediate surrounding medium and incorporate it at high concentrations into amino acids and phytochemicals. Selenium, supplied as 0.5, 1.0, 2.0, and 4.0?mg?L?1 Na2SeO3 increased the amino acid, protein, proline, and alliin content of in vitro-grown callus, embryo, plantlet, leaf, and root tissues of Allium sativum L. The enhancement was significant at 2 and 4?mg?L?1. Superoxide dismutase, catalase, and glutathione reductase activities increased in all in vitro-grown tissues and organs with increasing selenium concentrations, but enzyme activity was highest with 4?mg?L?1 selenium.  相似文献   

18.
The effect of age of radish seedlings on changes in chlorophyll concentration caused by ethylene was examined. Ethylene was produced at 2–4 nl g?1 h?1 following excision of cotyledons from 5-to 20-day-old seedlings. The youngest cotyledons maintained this rate, whereas ethylene synthesis declined by as much as 80% during a 24-h period in older cotyledons. The youngest cotyledons continued to accumulate chlorophyll in the dark, but after 7 days cotyledons lost chlorophyll and the proportion of chlorophyll lost increased with age. Ethylene promoted, and norbornadiene inhibited, this loss of chlorophyll; in combined treatments the effects of ethylene and norbornadiene were competitive. The maximal rate of chlorophyll loss occurred in 1μl L?1 ethylene; extrapolation of the response to concentration indicated that half-maximum loss would occur at 0.005–0.01 μl L?1 ethylene. In cotyledons from 20-day-old seedlings, chlorophyll degradation occurred mainly after 24 h from excision and transfer to the dark. Chlorophyll degradation during 48 h in the dark was affected by norbornadiene or ethylene applied from 0–24 h or from 24–48 h.  相似文献   

19.
Nitrate reductase (NO3R) activity, nitrite reductase (NO2R) activity and NADH2 dependent glutamate dehydrogenase (GDH) activity were followed in extracts from excised pea roots incubated under aseptic conditions for 9 and 24 h in nitrate containing nutrient medium to which IAA was added in concentrations promoting lateral root formation (1 × 10?5; 3 × 10?5; 5 × 10?5 M) and kinetin in concentrations which reduce lateral root formation (0.1; 1; 5 mg 1?1, that is 4.65 × 10?7;4.65 × 10?6 and 2.3 × 10?5 M). NO3R activity was not influenced by IAA, NO2R activity was slightly depressed by IAA after 24 h incubation and GDH activity was slightly increased after 24 h incubation in the presence of IAA. Kinetin decreased NO3R activity significantly both after 9 h and 24 h incubation, slightly increased NO2R activity after 9 h incubation but slightly decreased it after 24 h incubation, and did not affect GDH activity after 24 h incubation. However, when applied together with IAA, kinetin abolished the promoting effect of IAA on GDH activity. IAA neither reversed nor accentuated the effect of kinetin on NO2R activity. Nevertheless the depressing effect of kinetin on NO3R activity was emphasized by the presence of IAA after 9 h incubation. The results obtained indicate that reduced nitrate assimilation due to the depression of nitrate reductase activity caused by kinetin probably contributes to the negative growth effect of kinetin in pea root segments grown in nitrate medium.  相似文献   

20.
The objective of this study was to assess the efficacy of a bench-scale, acetate-fed, packed bed bioreactor (PBR) to treat low concentrations (>1 mg L?1) of perchlorate (ClO4 ?) in groundwater collected from an impacted site. The PBR consisted of a cylindrical plexiglass column packed with Celite, a diatomaceous earth product, as a solid support medium. The reactor was inoculated with a ClO?4 ?-reducing bacterial isolate, perclace. Results showed that with influent ClO4 ? concentrations of approximately 800 μg L?1, nondetectable effluent concentrations (>4 μg L?1) were achieved with the PBR/perclace system at residence time as low as 0.3 h. Influent acetate concentrations of less than 500 mg L?1 yielded nondetectable effluent ClO? 4 concentrations, and acetate concentrations generally less than 50 mg L?1 were present in the effluent. Nitrate (NO? ?3) was also removed in this system, while sulfate (SO4 2?) reduction was not observed. The pH remained relatively constant during the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号