首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Sabat  R Cini  T Haromy  M Sundaralingam 《Biochemistry》1985,24(26):7827-7833
The 1:1:1 complex of Mn2+, ATP, and 2,2'-dipyridylamine (DPA) crystallizes as Mn-(HATP)2.Mn(H2O)6.(HDPA)2.12H2O in the orthorhombic space group C222(1) with unit cell dimensions a = 10.234 (3) A, b = 22.699 (3) A, and c = 31.351 (4) A. The structure was solved by the multisolution technique and refined by the least-squares method to a final R index of 0.072 using 3516 intensities. The structure is composed of two ATP molecules sharing a common manganese atom. The metal exhibits alpha, beta, gamma coordination to the triphosphate chains of two dyad-related ATP molecules, resulting in a hexacoordinated Mn2+ ion surrounded by six phosphate groups. The metal to oxygen distances are 2.205 (6), 2.156 (4), and 2.144 (5) A for the alpha-, beta-, and gamma-phosphate groups, respectively. No metal-base interactions are observed. There is a second hexaaqua-coordinated Mn2+ ion that is also located on a dyad axis. The hydrated manganese ions sandwich the phosphate-coordinated manganese ions in the crystal with a metal-metal distance of 5.322 A. The ATP molecule is protonated on the N(1) site of the adenine base and exhibits the anti conformation (chi = 66.0 degrees). The ribofuranose ring is in the 2/3 T conformation with pseudorotation parameters P = 179 (1) degrees and tau m = 34.1 (6) degrees. The adenine bases form hydrogen-bonded self-pairs across a crystallographic dyad axis and stack with both DPA molecules to form a column along the dyad. The structure of the metal-ATP complex provides information about the possible metal coordination, conformation, and environment of the nucleoside triphosphate substrate in the enzyme.  相似文献   

2.
The X-ray crystal structure of the complex between the anthracycline idarubicin and d(CGATCG) has been solved by molecular replacement and refined to a resolution of 2.0 A. The final R-factor is 0.19 for 3768 reflections with Fo > or = 2 sigma (Fo). The complex crystallizes in the trigonal space group P31 with unit cell parameters a = b = 52.996(4), c = 33.065(2) A, alpha = beta = 90 degree, gamma = 120 degree. The asymmetric unit consists of two duplexes, each one being complexed with two idarubicin drugs intercalated at the CpG steps, one spermine and 160 water molecules. The molecular packing underlines major groove-major groove interactions between neighbouring helices, and an unusually low value of the occupied fraction of the unit cell due to a large solvent channel of approximately 30 A diameter. This is the first trigonal crystal form of a DNA-anthracycline complex. The structure is compared with the previously reported structure of the same complex crystallizing in a tetragonal form. The geometry of both the double helices and the intercalation site are conserved as are the intramolecular interactions despite the different crystal forms.  相似文献   

3.
Direct x-ray analysis has been used to determine the crystal structure of [D-Hyi2, L-Hyi4]meso-valinomycin (cyclo[-D-Val-D-Hyi-L-Val-L-Hyi-(D-Val-L-Hyi-L-Val-D-+ ++Hyi)2-], C60H102N6O18), which crystallized from acetone with two solvent molecules. The crystals are trigonal, space group P32, number of molecules per unit cell Z = 3, cell parameters a = b = 15.2085 (8) A, c = 29.3250 (9) A, gamma = 120 degrees. The standard (R) and weighted (Rw) reliability factors after refinement of the atomic coordinates for C, N, and O atoms in the anisotropic thermal motion approximation, allowing for isotropic H atom contributions, were 0.070 and 0.082, respectively. The molecule adopts a distorted bracelet structure which is stabilized by six N-H ... O = C 4----1 type intramolecular hydrogen bonds. The side chains predominantly occupy external pseudoaxial positions relative to the cylindrical axis of the molecule. In contrast to meso-valinomycin, only four of the six Val carbonyl oxygen atoms are directed inwards to form a coordination centre for the molecule, and the carbonyl oxygen atoms of residues D-Val1 and L-Val3 are twisted outward and point away from the centre of the molecule. Although the analogue has a partially formed ion-binding center, it is inaccessible because the hydrophobic isopropyl groups of the D-Hyi2 and L-Hyi4 residues screen the molecular cavity on both sides.  相似文献   

4.
Three different five coordinate nickel(II) complexes of tripyrrin ligands with chloro, oxalato and nitrato anionic ligands were obtained by ligand exchange reactions from respective trifluoroacetato species prepared in situ. Crystallographic studies of these compounds revealed different coordination geometries as well as different packing pattern. In the solid, the chloride complex accepts one water ligand to form a distorted trigonal bipyramid with two N donor centers in apical and one in an equatorial position. The molecules are organized in the crystal via hydrogen bonds, resulting in endless chains. Oxalate serves as a bridging ligand between two nickel(II) tripyrrins. Again the coordination of nickel(II) is found to be trigonal bipyramidal but with two equatorial and one apical nitrogen donors. The discrete dinuclear complexes are arranged in the crystal in a way as to form channels filled with toluene molecules. The nitrate species displays a η2 bound nitrate ligand and short contacts between the nickel(II) center and an ethyl substituent of a neighboring molecule. The complex shows an unusually distorted molecular structure and unexpected differences in the two Ni-O bond lengths.  相似文献   

5.
Pyridoxine 5'-phosphate oxidase (PNP Ox) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate. The 53-kDa homodimeric enzyme contains a noncovalently bound flavin mononucleotide (FMN) on each monomer. Three crystal forms of Escherichia coli PNP Ox complexed with FMN have been obtained at room temperature. The first crystal form belongs to trigonal space group P3(1)21 or P3(2)21 with unit cell dimensions a = b = 64.67A, c = 125.64A, and has one molecule of the complex (PNP Ox-FMN) per asymmetric unit. These crystals grow very slowly to their maximum size in about 2 to 4 months and diffract to about 2.3 A. The second crystal form belongs to tetragonal space group P4(1) or P4(3) with unit cell dimensions a = b = 54.92A, c = 167.65A, and has two molecules of the complex per asymmetric unit. The crystals reach their maximum size in about 5 weeks and diffract to 2.8 A. A third crystal form with a rod-like morphology grows faster and slightly larger than the other two forms, but diffracts poorly and could not be characterized by X-ray analysis. The search for heavy-atom derivatives for the first two crystal forms to solve the structure is in progress.  相似文献   

6.
Three crystal forms of canine myeloperoxidase are described. An orthorhombic form in space group P2(1)2(1)2(1) has unit cell dimensions: a = 108.3 A (1 A = 0.1 nm) b = 205.9 A and c = 139.9 A. A trigonal form in space group P3(1)21 or P3(2)21 has unit cell dimensions: a = b = 138.9 A and c = 145.2 A. A monoclinic form in space group C2 has unit cell dimensions: a = 117.2 A, b = 96.9 A, c = 131.4 A and beta = 116.3 degrees. Unusual features in the diffraction patterns of the monoclinic form place restrictions on the molecular packing in the crystal. The proposed model for the molecular packing requires that the myeloperoxidase molecule consist of two identical or near-identical halves. In the intact molecule these halves may be related either by a crystallographic dyad axis or by an approximate dyad axis in which one subunit is translated relative to the other by 3.2 A along the symmetry axis. The trigonal crystal form appears most suitable for high-resolution X-ray structural analysis.  相似文献   

7.
Sun Y  Soloway RD  Han YZ  Yang GD  Wang XZ  Liu ZJ  Yang ZL  Xu YZ  Wu JG 《Steroids》2002,67(5):385-392
The crystal structure of cesium cholate, C(24)H(36)(OH)(3) COOCs has been determined with three-dimensional X-ray diffractometer data. It crystallized in the monoclinic space group P2(1) with unit-cell dimensions a = 11.543(5) A, b = 8.614(3) A, and c = 12.662(5) A, beta(deg) = 107.95(2), V = 1197.7 A(3) and Z = 2. The atomic parameters were refined to a final r = 0.0269 and R(omega) = 0.0280 for 2342 observed reflections. Each Cs(+) is coordinated to 7 oxygen atoms from 5 different cholate anions with Cs-O distances ranging from 2.957(4) A to 3.678(5) A. In this crystal, 5 cholates are coordinated with 1 Cs(+), and 5 Cs(+) are coordinated with 1 cholate anion. Carboxyl and all the 3 ring hydroxyl groups of cholate anion participate in binding to Cs(+) simultaneously, and there is no water molecule coordinated with the Cs(+). The pattern of successive rows arranged with polar (p) and non-polar (n) faces in apposition leads to the formation of a sandwich sheet structure with polar and non-polar channels. The Cs ions lie within the polar interior of the sandwich. The H-bond network is reorganized in forming cesium cholate from cholic acid. All the oxygen atoms in cholate anion are involved in H-bonding reciprocally or with water molecules to form an extensive 3-dimensional network of H-bonds. Compared with cholic acid and other similar type of steroids, the coordination structure and H-bonding of Cs cholate crystal are distinct.  相似文献   

8.
In Escherichia coli, flavodoxin is the physiological electron donor for the reductive activation of the enzymes pyruvate formate-lyase, anaerobic ribonucleotide reductase, and B12-dependent methionine synthase. As a basis for studies of the interactions of flavodoxin with methionine synthase, crystal structures of orthorhombic and trigonal forms of oxidized recombinant flavodoxin from E. coli have been determined. The orthorhombic form (space group P2(1)2(1)2(1), a = 126.4, b = 41.10, c = 69.15 A, with two molecules per asymmetric unit) was solved initially by molecular replacement at a resolution of 3.0 A, using coordinates from the structure of the flavodoxin from Synechococcus PCC 7942 (Anacystis nidulans). Data extending to 1.8-A resolution were collected at 140 K and the structure was refined to an Rwork of 0.196 and an Rfree of 0.250 for reflections with I > 0. The final model contains 3,224 non-hydrogen atoms per asymmetric unit, including 62 flavin mononucleotide (FMN) atoms, 354 water molecules, four calcium ions, four sodium ions, two chloride ions, and two Bis-Tris buffer molecules. The structure of the protein in the trigonal form (space group P312, a = 78.83, c = 52.07 A) was solved by molecular replacement using the coordinates from the orthorhombic structure, and was refined with all data from 10.0 to 2.6 A (R = 0.191; Rfree = 0.249). The sequence Tyr 58-Tyr 59, in a bend near the FMN, has so far been found only in the flavodoxins from E. coli and Haemophilus influenzae, and may be important in interactions of flavodoxin with its partners in activation reactions. The tyrosine residues in this bend are influenced by intermolecular contacts and adopt different orientations in the two crystal forms. Structural comparisons with flavodoxins from Synechococcus PCC 7942 and Anaebaena PCC 7120 suggest other residues that may also be critical for recognition by methionine synthase.  相似文献   

9.
Two monoclinic (P2(1)) crystal forms of human serum amyloid P component (SAP) in complex with the 4,6-pyruvate acetal of beta-D-galactose (MObetaDG) were prepared. Structure analysis by molecular replacement and refinement at 2.2A resolution revealed that crystal form 1 (a=95.76A, b=70.53A, c=103.41A, beta=96.80 degrees) contained a pentamer in the asymmetric unit with a structure very similar to that of the published search model. The mode of ligand co-ordination was also similar except that four of the five subunits showed bound ligand with an additional H-bond between O1 of the galactose and the side-chain of Lys79. One sub-unit showed no bound ligand and a vacant calcium site close to a crystal contact. The 2.6A resolution structure of crystal form 2 (a=118.60A, b=109.10A, c=120.80A and beta=95.16 degrees ) showed ten sub-units in the asymmetric unit, all with two bound calcium ions and ligand. The most extensive protein-protein interactions between pentamers describe an AB face-to-face interaction involving 15 ion pairs that sandwiches five molecules of bound MObetaDG at the interface.  相似文献   

10.
The low-humidity IB crystal form of aspartame (L-alphaaspartyl-L-phenylalanine methyl ester) is prepared via humidity-induced transition from the highly hydrated IA crystal form and is used widely as a sweetener. The crystal structure of the low-humidity IB form is determined at 1.05 A resolution (0.476 A(-1) in maximum sintheta/lambda) from an extremely fine fibrous crystal using synchrotron radiation. There are three aspartame molecules and two water molecules in the asymmetric unit of the monoclinic space group P2(1). Each aspartame molecule adopts an almost identical extended conformation which is commonly observed in other crystal forms of aspartame. Three aspartame molecules are assembled into a triangular trimer, and trimer units are stacked along the b-axis via hydrogen-bonding and electrostatic interactions in the main chains and also via hydrophobic contacts in the phenyl side-chains. Six trimer units are related by pseudo 6(1)-screw axis symmetry and form a hydrophilic channel at their center. The hydrophilic channel in the IB form contains only four water molecules in the unit cell, compared with 16 in the IA form. Although the IB form exhibits a trimer structure similar to that of the IA form, one aspartame molecule is rotated by approximately equals 20 degrees from the orientation in the IA form. This arrangement of the molecule implies that the humidity-induced transition is accompanied by a flapping motion of its methyl ester group. These structural differences may imply the stepwise transition from the IA to the IB forms.  相似文献   

11.
Wang EJ  Yan Z  Cai J 《Carbohydrate research》2007,342(11):1530-1534
The crystal structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with 4-hydroxybiphenyl was determined by single-crystal X-ray diffraction at 150K. The complex contains two cyclomaltoheptaose molecules, two 4-hydroxybiphenyl molecules, one ethanol molecule and fifteen water molecules in the asymmetric unit, and could be formulated as [2(C(42)H(70)O(35)).2(C(12)H(10)O).(C(2)H(6)O).15(H(2)O)]. It crystallized in the triclinic space group P1 with unit cell constants a=15.257(3), b=15.564(3), c=15.592(2)A, alpha=104.485(15) degrees , beta=101.066(14) degrees , gamma=104.330(17) degrees , V=3,343.6(10)A(3). In the crystal lattice, two beta-cyclodextrins form a head-to-head dimer jointed through hydrogen bonds. Two 4-hydroxybiphenyls were included in the dimer cavity with their hydroxyl groups protruding from two primary hydroxyl sides of the cyclodextrin molecules. The guest 4-hydroxybiphenyl molecules linked into a chain via a combination of an O-Hcdots, three dots, centeredO hydrogen bond and face-to-face pi-pi stacking of the phenyl rings. The crystal structure supports the calculation results indicating that the 2:2 inclusion complex formed by beta-cyclodextrin and 4-hydroxybiphenyl is the energetically favored structure.  相似文献   

12.
The three-dimensional structure of an immunoglobulin light chain dimer (Mcg) crystallized in deionized water (orthorhombic form) was determined at 2.0 A resolution by phase extension and crystallographic refinement. This structure was refined side-by-side with that of the same molecule crystallized in ammonium sulfate (trigonal form). The dimer adopted markedly different structures in the two solvents. "Elbow bend" angles between pseudo 2-fold axes of rotation relating pairs of "variable" (V) and "constant" (C) domains were found to be 132 degrees in the orthorhombic form and 115 degrees in the trigonal form. Modes of association of the V domains and, to a lesser extent, the pairing interactions of the C domains were different in the two structures. Alterations in the V domain pairing were reflected in the shapes of the binding regions and in the orientations of the side-chains lining the walls of the binding sites. In the trigonal form, for instance, the V domain interface was compartmentalized into a main binding cavity and a deep pocket, whereas these spaces were continuous in the orthorhombic structure. Patterns of ordered water molecules were quite distinct in the two crystal types. In some cases, the solvent structures could be correlated with conformational changes in the proteins. For example, close contacts between V and C domains of monomer 1 of the trigonal form were not retained in orthorhombic crystals. Ordered water molecules filled the space created when the two domains moved apart.  相似文献   

13.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

14.
The crystal structure of SrCl(2).galactitol.4H(2)O has been determined. It belongs to monoclinic system, C2/c space group with unit cell dimensions: a=13.9849(3), b=14.1601(5), c=8.3026(3) A, beta=104.621(2) degrees, V=1590.9(9) A(3) and Z=4. Each Sr(2+) ion in the unit cell binds to two molecules of galactitol through O2 and O3 in one alditol and O2' and O3' in the other, as well as to four water molecules. Sr-O distances in SrCl(2).galactitol.4H(2)O complex range from 2.5420 to 2.6359 A. FT-IR, Raman and far-IR spectra of SrCl(2).galactitol.4H(2)O all show that SrCl(2) coordinates with galactitol through OH groups of the sugar molecule to form the new complex.  相似文献   

15.
The complex between cobalt hexammine and decadeoxyoligomer d(CGTACGTACG) crystallizes into the space group P65 with unit cell constants a = b = 17.93A, and c = 43.41A. The molecules have the helix axis coincident with the crystal c-axis. The decamers stack on top of each other and form a quasi-continuous helix. The structure is disordered. The asymmetric unit is a dimer (pPyr-pPur)2 with each base pair 60% of the time a C-G and 40% of the time a T-A. Restrainted least-squares refinement led to an R-factor of 25.5% for 506 observed reflections above the two-sigma level. The structure was found to have one strand in the ZI-conformation and the other in the ZII-conformation. The cobalt hexammine binds to two ZII-chains of symmetrically related molecules. On one ZII chain, two ammonia molecules of the cobalt hexammine bind to the N7 nitrogen and 06 oxygen atoms of the guanine bases and a third ammonia to the phosphate anionic oxygen atom of the preceding pyrimidine base, resulting in an "external" binding mode. On the other ZII chain, one ammonia molecule of the cobalt hexammine binds only to the anionic oxygens of the phosphate group of the guanine bases, leading to an "internal" binding mode. Thus, the basis of the stabilization of Z-DNA by [Co(NH3)6]3+ is its binding to only guanine nucleotides. It is surmised that statistical disordering of deoxyoligonucleotide structures which take a Z conformation, depends on the length of the oligomer. That is to say, octamers and decamers (which cannot use an integral number of molecules for a 12 base pair repeat) form disordered structures whereas tetramers and hexamers form well ordered structures.  相似文献   

16.
The crystal structures of the potassium-containing quadruplex formed from the Oxytricha nova sequence d(GGGGTTTTGGGG) are reported, in two space groups, the orthorhombic P2(1)2(1)2(1) and the trigonal P3(2)21, which diffract to 2.0 A and 1.49 A, respectively. The orthorhombic form contains two independent quadruplexes in the asymmetric unit, and the trigonal form contains one. All three of these quadruplexes adopt an identical fold, with two strands forming an antiparallel diagonal arrangement. This is identical with that observed previously in NMR studies of the native sodium and potassium forms, and a crystallographic analysis of it complexed with an O. nova protein. The present analysis demonstrates that the native structure is the same in solution and in the crystalline state and, moreover, that the nature of the counter-ion does not affect the overall fold of this quadruplex. The analysis corrects an earlier crystallographic study of this quadruplex. The conformation of the tetra-thymine loop is described in detail, which involves the third thymine base folding back to interact with the first thymine base. The water networks in the grooves and loops are described and, in particular, the ability of water molecules to form a continuous spine of hydration in the narrow groove is detailed. Each quadruplex has five potassium ions organised in a linear channel, with square antiprismatic coordination to each ion from oxygen atoms.  相似文献   

17.
The crystal structure of cyclo(L-Pro-Gly)3 was solved using X-ray crystallographic techniques. The backbone of the peptide is asymmetric and is made up of five trans peptide units and one cis peptide. There is a hydrogen bonded water bridge that links the carbonyl oxygens, O1 and O4. The molecules exist as dimers in the crystal lattice. The two molecules of the dimer are related by crystallographic twofold symmetry and are linked by two N-H ... O hydrogen bonds. The crystals are trigonal, space group P3(2)12 with a = 11.379(3), c = 32.93(1) and z = 6. The structure was solved by multisolution methods and refined by least squares technique to an R of 0.083.  相似文献   

18.
Three-dimensional structures of trypsin with the reversible inhibitor leupeptin have been determined in two different crystal forms. The first structure was determined at 1.7 A resolution with R-factor = 17.7% in the trigonal crystal space group P3(1)21, with unit cell dimensions of a = b = 55.62 A, c = 110.51 A. The second structure was determined at a resolution of 1.8 A with R-factor = 17.5% in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 63.69 A, b = 69.37 A, c = 63.01 A. The overall protein structure is very similar in both crystal forms, with RMS difference for main-chain atoms of 0.27 A. The leupeptin backbone forms four hydrogen bonds with trypsin and a fifth hydrogen bond interaction is mediated by a water molecule. The aldehyde carbonyl of leupeptin forms a covalent bond of 1.42 A length with side-chain oxygen of Ser-195 in the active site. The reaction of trypsin with leupeptin proceeds through the formation of stable tetrahedral complex in which the hemiacetal oxygen atom is pointing out of the oxyanion hole and forming a hydrogen bond with His-57.  相似文献   

19.
The shorter-chain form of chicken egg white cystatin has been crystallized in 1.6 M-phosphate buffer at pH 4.0 by vapour diffusion. The crystals are of trigonal space group P3121 (or P3221), have cell constants a = b = 47.9 A, c = 87.5 A, alpha = beta = 90 degrees, gamma = 120 degrees, and contain one molecule of 12,191 molecular weight per asymmetric unit. They diffract well to about 2.0 A resolution and are suitable for X-ray crystal structure analysis.  相似文献   

20.
The 2.1-A resolution crystal structure of native uncomplexed iron superoxide dismutase (EC 1.15.1.1) from Pseudomonas ovalis was solved and refined to a final R factor of 24%. The dimeric structure contains one catalytic iron center per monomer with an asymmetric trigonal-bipyramidal coordination of protein ligands to the metal. Each monomer contains two domains, with the trigonal ligands (histidines 74 and 160; aspartate 156) contributed by the large domain and stabilized by an extended hydrogen-bonded network, including residues from opposing monomers. The axial ligand (histidine 26) is found on the small domain and does not participate extensively in the stabilizing H-bond network. The open axial coordination position of the iron is devoid of bound water molecules or anions. The metal is located 0.5 A out of the plane of the trigonal ligands toward histidine 26, providing a slightly skewed coordination away from the iron binding site. The molecule contains a glutamine residue in the active site which is conserved between all iron enzymes sequenced to data but which is conserved among all manganese SODs at a separate position in the sequence. This residue shows the same structural interactions in both cases, implying that iron and manganese SODs are second-site revertants of one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号