首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000  相似文献   

2.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

3.
Studies of visual ecology have typically focused on differences among species while paying less attention to variation among populations and/or individuals. Here, we show that the relative abundance of UV, violet, yellow, and red cones varies between two populations of bluefin killifish, Lucania goodei. Animals from a spring population (high-transmission UV/blue light) have a higher frequency of UV and violet cones and a lower frequency of yellow and red cones than animals from a swamp population (low-transmission UV/blue light). Visual sensitivity does not vary significantly between the populations, but spring animals tend to be more sensitive in the UV/blue wavelengths (360–440 nm) and less sensitive in longer wavelengths (560–600 nm) than swamp animals. The results have two important implications. First, the tight conservation of functional regions of opsin genes across taxa does not imply that visual systems are constrained in their evolution; differential sensitivity can arise through differential expression of cone classes within the retina. Second, intraspecific visual signals in this species may evolve to maximize contrast between the signaler and the background (as opposed to brightness); males with blue anal fins are most abundant in swamp habitats where animals express fewer UV and violet cones.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

4.
The potential for trichromacy in mammals, thought to be unique to primates, was recently discovered in two Australian marsupials. Whether the presence of three cone types, sensitive to short- (SWS), medium- (MWS) and long- (LWS) wavelengths, occurs across all marsupials remains unknown. Here, we have investigated the presence, distribution and spectral sensitivity of cone types in two further species, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Immunohistochemistry revealed that SWS cones in the quokka are concentrated in dorso-temporal retina, while in the quenda, two peaks were identified in naso-ventral and dorso-temporal retina. In both species, MWS/LWS cone spatial distributions matched those of retinal ganglion cells. Microspectrophotometry (MSP) confirmed that MWS and LWS cones are spectrally distinct, with mean wavelengths of maximum absorbance at 502 and 538 nm in the quokka, and at 509 and 551 nm, in the quenda. Although small SWS cone outer segments precluded MSP measurements, molecular analysis identified substitutions at key sites, accounting for a spectral shift from ultraviolet in the quenda to violet in the quokka. The presence of three cone types, along with previous findings in the fat-tailed dunnart and honey possum, suggests that three spectrally distinct cone types are a feature spanning the marsupials.  相似文献   

5.
The spectral sensitivity and complement of the retinal photoreceptors of the Asiatic smelt from the Sea of Japan were studied by microspectrophotometry and light microscopy. Apart from rods, one type of single cones and one type of unequal double cones were found in major parts of the retina. The dominant type of the cone pattern (mosaic) is a row pattern consisting of various linear arrangements of separate single and double cones. The absorbance maxima of rods and a majority of singe cones and double cones equaled 516, 425 and 514/565 nm, respectively. It has been established that all of the pigments are based on retinal. The findings are compared with data on the osmerid retina from the literature and discussed with respect to the adaptations to light conditions, peculiarities of behavior, and seasonal migrations of smelts.  相似文献   

6.
As the ear has dual functions for audition and balance, the eye has a dual role in detecting light for a wide range of behavioral and physiological functions separate from sight. These responses are driven primarily by stimulation of photosensitive retinal ganglion cells (pRGCs) that are most sensitive to short-wavelength ( approximately 480 nm) blue light and remain functional in the absence of rods and cones. We examined the spectral sensitivity of non-image-forming responses in two profoundly blind subjects lacking functional rods and cones (one male, 56 yr old; one female, 87 yr old). In the male subject, we found that short-wavelength light preferentially suppressed melatonin, reset the circadian pacemaker, and directly enhanced alertness compared to 555 nm exposure, which is the peak sensitivity of the photopic visual system. In an action spectrum for pupillary constriction, the female subject exhibited a peak spectral sensitivity (lambda(max)) of 480 nm, matching that of the pRGCs but not that of the rods and cones. This subject was also able to correctly report a threshold short-wavelength stimulus ( approximately 480 nm) but not other wavelengths. Collectively these data show that pRGCs contribute to both circadian physiology and rudimentary visual awareness in humans and challenge the assumption that rod- and cone-based photoreception mediate all "visual" responses to light.  相似文献   

7.
Summary The spectral sensitivity of the compound eye in three butterfly species (Heliconius erato, H. numata, H, sara) was tested electrophysiologically in the wavelength region 310 to 650 nm. Sensitivity maxima were found at 370 to 390 nm, 450 to 470 nm, and 550 to 570 nm, for all species. The three sensitivity maxima are suggested to be due to different photoreceptor types effecting wave-length discrimination. An interspecies difference in spectral sensitivity was also found. The difference is suggested to be due to the relative number of photoreceptors of each type. In some of the present experiments a small discontinuity in sensitivity was found at 610 or 630 nm. It is probably caused by a selective reflection of these wavelengths from a tapetum.  相似文献   

8.
The spectral sensitivities of 12 species of mesopelagic crustaceans were studied by means of electrophysiological recordings. Nine of the species are vertical migrators, while 3 are not, and 9 species possess bioluminescent organs, while 3 are not bioluminescent. All species had a single peak of spectral sensitivity with maxima between 470 nm and 500 nm. There was no apparent correlation between sensitivity maxima and daytime depth distribution, migratory behavior, or the presence or absence of bioluminescent organs. With the exception of the hyperiid amphipod Phronima sedentaria, the spectral sensitivities of these mesopelagic crustaceans demonstrate a better match for maximum sensitivity to bioluminescence than to downwelling light. Accepted: 29 June 1999  相似文献   

9.
Spectral responses from the compound eyes of 35 lepidopteran species representing 14 families were investigated electrophysiologically using ERG recordings. The light-stimuli used overed the range of 383–700 nm wavelengths. All species show three or four maxima in their spectral sensitivity curves. Two of these peaks were usually associated with ultraviolet and blue light (383 and 460 nm, respectively). The other maxima occurred in the 500–620 nm region. In Nymphalidae the highest peak was found in response to 560–580 nm stimuli. Of all wavelengths tested, these are the longest wavelengths to produce principal peak sensitivities.Pieridae and Lycaenidae have maxima in the UV region which represent significantly higher sensitivities than the secondary peaks to stimuli of longer wavelengths.Satyridae, Danaidae, Hesperiidae and diurnal moths except Epicopeia (Epicopeidae) generally have similar sensitivity curves with principal peaks between 500 and 520 nm.In Papilionid species except Graphium (max = 560 nm) high maxima occur in the UV and blue (460 nm) region.Noctural Sphingid moths possess the highest peak sensitivity at 540 nm. All other noctural moths tested have three or four maxima.  相似文献   

10.
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones.  相似文献   

11.
Summary Ground squirrels have dichromatic color vision. The spectral sensitivities of the two classes of cones found in the retinas of two species of ground squirrel were measured using ERG flicker photometry. The spectral sensitivity curves for these cone classes were closely fit by curves from wavelength-dependent visual pigment nomograms. One cone type had an average peak sensitivity of 518.9 nm (California ground squirrels,Spermophilus beecheyi) or 517.0 nm (thirteen-lined ground squirrels,Spermophilus tridecemlineatus). The second type of cone found in these ground squirrels had an average peak sensitivity of 436.7 nm. An examination of the variation in spectral sensitivity among individual animals suggests that the sensitivity peaks for the middle-wavelength cone cover a range of not greater than 4 nm.  相似文献   

12.
Spectral sensitivity was measured in air in the light adapted state in two harbor seals and a South American sea lion using a behavioral training technique. Increment thresholds were determined in a spectral range from 390 nm to 670 nm in a simultaneous two‐choice discrimination task. The spectral sensitivity curves show two maxima in sensitivity, one main peak with a maximum around 500 nm in the harbor seal and around 550 nm in the South American sea lion, and a second, smaller peak with a maximum in the range of 410 nm in both species. The broad shape and the position of the maximum of the spectral sensitivity curve of the harbor seals suggests that even under photopic conditions both rods and cones are contributing to the measurements since harbor seals possess only one cone type. The maximum sensitivity in the green part of the spectrum may indicate an adaptation to a specific underwater environment.  相似文献   

13.
Summary This study reports photopic spectral sensitivity curves (351–709 nm) for four individual roach,Rutilus rutilus, determined by two choice appetitive training. All four curves show four sensitivity maxima at 361–398 nm, 421–448 nm, 501–544 nm and 634–666 nm which are related to the four known roach photopic visual pigments (Avery et al. 1982). The overall shape of the curves at long wavelengths indicates inhibitory interactions between the red and green cone mechanisms. That the high behavioural sensitivity in the UV is caused by a specific ultraviolet visual pigment and is not due to aberrant stimulation of the other cone types is shown by the redetermination of spectral sensitivity at short wavelengths (351–501 nm) following the selective bleaching of the three longer wavelength visual pigments. This depresses the blue sensitivity to a greater degree than the relatively unaffected UV sensitivity maximum. Spectral transmission data from two corneas and four lenses show that they transmit considerable amounts of light in the near UV.  相似文献   

14.
Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (λmax) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred λmax of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred λmax of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred λmax of ∼440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Summary The crustaceanDaphnia magna responds to a flash of light with a ventral rotation of its compound eye; this behavior is termed eye flick. We determined the spectral sensitivity for the threshold of eye flick in response to light flashes having three different spatial characteristics: (1) full-field, extending 180° from dorsal to ventral in the animal's field of view; (2) dorsal, 30° wide and located in the dorsal region of the visual field; (3) ventral, same as dorsal but located ventrally. All three stimuli extended 30° to the right and to the left of the animal's midplane. We found that spectral sensitivity varies with the spatial characteristics of the stimulus. For full-field illumination, the relative sensitivity was maximal at 527 nm and between 365 nm and 400 nm, with a significant local minimum at 420 nm. For the dorsal stimulus, the relative sensitivity was greatest at 400 nm, but also showed local maxima at 440 nm and 517 nm. For the ventral stimulus, the relative sensitivity maxima occurred at the same wavelengths as those for the full-field stimulus. At wavelengths of 570 nm and longer, the responses to both dorsal and ventral stimuli showed lower relative sensitivity than the full-field stimulus. No circadian or other periodic changes in threshold spectral sensitivity were observed under our experimental conditions. Animals which had their nauplius eyes removed by means of laser microsurgery had the same spectral sensitivity to full-field illumination as normal animals. Our results are discussed in terms of our current knowledge of the spectral classes of photoreceptors found in theDaphnia compound eye.  相似文献   

16.
The visual receptors in the retina of the passeriform bird Leiothrix lutea were examined microspectro-photometrically. The rods had a maximum absorbance close to 500 nm. Four spectrally different classes of single cone were identified with typical combinations of photopigments and oil droplets: a long-wave sensitive cone with a photopigment P568 and a droplet with a cut-off wavelength at 564 nm, a middle-wave sensitive cone with a P499 and a droplet with a cut-off at 506 nm, a short-wave sensitive cone with a P454 and a droplet with maximum absorbance below 410nm and an ultraviolet sensitive cone with a P355 and a transparent droplet. Double cones possessed a P568 in both the principal and accessory members. A pale droplet with variable absorbance (maximal at about 420 nm) was associated with the principal member whereas the ellipsoid region of the accessory member contained only low concentrations of carotenoid. The effective spectral sensitivities of the different cone classes were calculated from the characteristic combinations of oil droplets and photopigments and corrected for the absorbance of the ocular media. Comparison of these results with the behavioural spectral sensitivity function of Leiothrix lutea suggests that the increment threshold photopic spectral sensitivity of this avian species is mediated by the 4 single cone classes modified by neural opponent mechanisms.Abbreviations LWS long wave sensitive - MWS middle wave sensitive - SWS short wave sensitive (cones)  相似文献   

17.
A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).  相似文献   

18.
Summary The spectral sensitivity of the visual cells in the compound eye of the mothDeilephila elpenor was determined by electrophysiological mass recordings during exposure to monochromatic adapting light. Three types of receptors were identified. The receptors are maximally sensitive at about 350 nm (ultraviolet), 450 nm (violet), and 525 nm (green). The spectral sensitivity of the green receptors is identical to a nomogram for a rhodopsin with max at 525 nm. The spectral sensitivity of the other two receptors rather well agrees with nomograms for corresponding rhodopsins. The recordings indicate that the green receptors occur in larger number than the other receptors. The ultra-violet and violet receptors probably occur in about equal number.The sensitivity after monochromatic adapting illumination varies with the wavelength of the adapting light, but is not proportional to the spectral sensitivity of the receptors. The sensitivity is proportional to the concentration of visual pigment at photoequilibrium. The equilibrium is determined by the absorbance coefficients of the visual pigment and its photoproduct at each wavelength. The concentration of the visual pigment, and thereby the sensitivity, is maximal at about 450 nm, and minimal at wavelengths exceeding about 570 nm.The light from a clear sky keeps the relative concentration of visual pigment in the green receptors, and the relative sensitivity, at about 0.62. The pigment concentration in the ultra-violet receptors is about 0.8 to 0.9, and that in the violet receptors probably about 0.6. At low ambient light intensities a chemical regeneration of the visual pigments may cause an increase in sensitivity. At higher intensities the concentrations of the visual pigments remain constant. Due to the constant pigment concentrations the input signals from the receptors to the central nervous system contain unequivocal information about variations in intensity and spectral distribution of the stimulating light.The work reported in this article was supported by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst, and by the Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie HA 258-10, and SFB 114.  相似文献   

19.
Summary Electroretinograms obtained in the butterfliesAglais urticae andPieris brassicae by the procedure of Fourier interferometric stimulation (FIS) were used to construct spectral sensitivity curves. These curves, representing the combined responses of several receptor types, were approximated by summation of spectral sensitivity curves for individual pigments, and the presence of these pigments was corroborated by chromatic adaptation experiments. The results show that the retina in the compound eye ofAglais urticae contains 3 photopigments, with maximal absorption at ca. 360 nm, 460 nm and 530 nm, respectively (Fig. 5). The retina in the compound eye ofPieris brassicae has two subdivisions. In the dorsal region of the eye 3 photopigments were found, with maxima at ca. 360 nm, 450 nm and 560 nm (Fig. 8). In the medioventral region pigments with essentially the same maxima are present together with an additional, fourth long-wavelength component with effective maximal absorption at ca. 620 nm (Fig. 11). Its absorption curve is considerably narrower than would be expected for a rhodopsin with the same absorption maximum, and presumably results from the spectral combination of a photopigment and a photostable screening pigment.Abbreviations FIS Fourier interferometric stimulation - WLP White-light position - ERG Electroretinogram  相似文献   

20.
Summary Using the technique of microspectrophotometry (MSP) we have found that the short wavelength sensitive cones in the retina of the pollack (Pollachius pollachius) shift in spectral absorption from a maximum ( max) at about 420 nm in the violet to about 460 nm in the blue. This shift is not due to chromophore replacement, which substitutes rhodopsin for a porphyropsin, but is more likely to be due to a change in the opsin. The shift appears to be progressive rather than abrupt and coincides with a change in lifestyle of the fish.Abbreviations MSP microspectrophotometry - SL standard length - UV ultraviolet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号