首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee J  Bae YH  Sohn YS  Jeong B 《Biomacromolecules》2006,7(6):1729-1734
We are reporting alternating multiblock copolymers of poly(L-lactic acid)/poly(ethylene glycol) aqueous solution (> 15 wt %) undergoing sol-gel-sol transition as the temperature increases from 20 to 60 degrees C. Micelles of the multiblock copolymers (in water) are about 20 nm in radius at low temperature. They are aggregated to a larger size as the temperature increases, which should play a critical role in the sol-to-gel transition. The transition temperature and gel window were affected by the molecular weight and composition of the multiblock copolymer. In particular, the aqueous solution of an alternating multiblock copolymer (Mn approximately 6700 daltons) prepared from poly(ethylene glycol) (Mn approximately 600 daltons) and poly(L-lactic acid) (Mn approximately 1300 daltons) showed a maximum modulus at body temperature (37 degrees C). The in situ gel forming ability of the polymer aqueous solution in vivo as well as in vitro indicates that it can be a promising injectable biomaterial.  相似文献   

2.
Block samples of carbonized solid iron bamboo (Dendrocalamus strictus) - unique genus among bamboos, were prepared by means of slow pyrolysis. They are expected to be promising monolithic supports for various composites. The purpose of this study is to describe the thermal decomposition of rectangular shapes cut from solid stems of Dendrocalamus strictus, raw and pre-charred in a wide range of temperatures: 300, 350, 400, 500 and 600 degrees C. The DTG thermograms of carbonized solid iron bamboo (char), determined at temperatures up to 900 degrees C, exhibited minima even for samples previously pyrolysed at temperatures over 400 degrees C, at which decomposition of plant material have to be completed. For pre-charred samples, the temperature of the DTG peaks increased, while the weight loss registered in the temperature range up to 900 degrees C decreased, with increasing temperature of carbonization. It was found that extension of time of holding at final temperature of carbonization decreased a height of the DTG peaks to full reduction of it after heating along the time of 8h. It was suggested that bamboo tar remaining in vessels after carbonization reacts with the bamboo char creating new compounds that decompose in distinctly higher temperatures.  相似文献   

3.
Temperature dependence of rat diaphragm muscle contractility and fatigue   总被引:1,自引:0,他引:1  
The diaphragm is a skeletal muscle of mixed fiber type that is unique in its requirement to maintain contractile function and fatigue resistance across a wide range of temperatures to sustain alveolar ventilation under conditions of hypo- or hyperthermia. The direct effect of temperature (15-41 degrees C) on rat diaphragm isometric contractility and fatigue was determined in vitro. As temperature decreased from 37 to 15 degrees C, contraction and relaxation times increased, and there was a left shift of the diaphragm's force-frequency curve, with decreased contractility at 41 and 15 degrees C. Fatigue was induced by 10 min of stimulation with 30 trains/min of 5 Hz at a train duration of 900 ms. Compared with 37 degrees C, fatigue resistance was enhanced at 25 degrees C, but no difference in fatigue indexes was evident at extreme hypothermia (15 degrees C) or hyperthermia (41 degrees C). Only when the fatigue program was adjusted to account for hypothermia-induced increases in tension-time indexes was fatigue resistance evident at 15 degrees C. These findings indicate that despite the diaphragm's unique location as a core structure, necessitating exposure to in vivo temperatures higher than found in limb muscle, the temperature dependence of rat diaphragm muscle contractility and fatigue is similar to that reported for limb muscle of mixed fiber type.  相似文献   

4.
Changes in chemical and surface characteristics of Brazil Nut shells (Bertholletia excelsa) due to pyrolysis at different temperatures (350 degrees C, 600 degrees C, 850 degrees C) were examined. For this purpose, proximate and ultimate analyses, physical adsorption measurements of N2 (-196 degrees C) and CO, (25 degrees C) as well as samples visualisation by scanning electronic microscopy (SEM) were performed. Appreciable differences in the residue characteristics, depending markedly on the pyrolysis temperature, were observed. Release of volatile matter led to the development of pores of different sizes. Progressive increases in micropore development with increasing pyrolysis temperature took place, whereas a maximum development of larger pores occurred at 600 degrees C. Furthermore, kinetics measurements of Brazil Nut shells pyrolysis from ambient temperature up to 900 degrees C were performed by non-isothermal thermogravimetric analysis. A model taking into account the significant changes in the residue during pyrolysis, through an increase in the activation energy with temperature and solid conversion, were found to properly fit the kinetics data over the wide range of degradation investigated.  相似文献   

5.
We measured maximum temperature rises on the side of the face after 6 min of continuous mobile phone operation using two models of AMPS analog phones operating in the 835 MHz band and three early model GSM digital phones operating in the 900 MHz band. For the GSM phones the highest recorded temperature rise difference was 2.3 degrees C and for the AMPS phones it was 4.5 degrees C, both at locations on the cheek. The higher differential temperature rise between AMPS and GSM may reflect the higher maximum average operating power of AMPS (600 mW) versus GSM900 (250 mW). Additionally, we compared temperature changes at a consistent location on the cheek for an AMPS phone that was inoperative (-0.7 degrees C), transmitting at full power (+2.6 degrees C) and in stand-by mode (+2.0 degrees C). Our results suggest that direct RF heating of the skin only contributes a small part of the temperature rise and that most is due to heat conduction from the handset.  相似文献   

6.
The influence of radio frequency (RF) fields of 180, 900, and 1800 MHz on the membrane potential, action potential, L-type Ca(2+) current and potassium currents of isolated ventricular myocytes was tested. The study is based on 90 guinea-pig myocytes and 20 rat myocytes. The fields were applied in rectangular waveguides (1800 MHz at 80, 480, 600, 720, or 880 mW/kg and 900 MHz, 250 mW/kg) or in a TEM-cell (180 MHz, 80 mW/kg and 900 MHz, 15 mW/kg). Fields of 1800 and 900 MHz were pulsed according to the GSM-standard of cellular phones. The specific absorption rates were determined from computer simulations of the electromagnetic fields inside the exposure devices by considering the structure of the physiological test arrangement. The electrical membrane parameters were measured by whole cell patch-clamp. None of the tested electrophysiological parameters was changed significantly by exposure to RF fields. Another physical stimulus, lowering the temperature from 36 degrees C to 24 degrees C, decreased the current amplitude almost 50% and shifted the voltage dependence of the steady state activation parameter d(infinity) and inactivation parameter f(infinity) of L-type Ca(2+) current by about 5 mV. However, at this lower temperature RF effects (900 MHz, 250 mW/kg; 1800 MHz, 480 mW/kg) on L-type Ca(2+) current were also not detected.  相似文献   

7.
Canes from Arundo donax, a herbaceous rapid-growing plant, were used as precursor for activated carbon preparation by phosphoric acid activation under a self-generated atmosphere. The influence of the carbonization temperature in the range 400-550 degrees C and of the weight ratio phosphoric acid to precursor (R = 1.5-2.5) on the developed porous structure of the resulting carbons was studied for 1 h of carbonization time. Surface properties of the activated carbons were dependent on a combined effect of the conditions employed. Carbons developed either with R = 1.5 over the range 400-500 degrees C, or with R = 2 at 500 degrees C exhibited surface areas of around 1100 m2/g, the latter conditions promoting a larger pore volume and enhanced mesoporous character. For both ratios, temperature above 500 degrees C led to reduction in porosity development. A similar effect was found for the highest ratio (R = 2.5) and 500 degrees C. The influence of carrying out the carbonization either for times shorter than 1 h or under flowing N2 was also examined at selected conditions (R = 2, 500 degrees C). Shorter times induced increase in the surface area (approximately 1300 m2/g), yielding carbons with smaller mean pore radius. Activated carbons obtained under flowing N2 possessed predominant microporous structures and larger ash contents than the samples derived in the self-generated atmosphere.  相似文献   

8.
Clone NS20Y of the mouse neuroblastoma C1300 was infected with wild-type Edmonston measles virus, and, after a transition to a carrier culture, became persistently infected. Persistently infected clones were derived and characterized morphologically by the appearance of multinucleate giant cells and nucleocapsid matrices in cytoplasm and nucleus, but very few budding virus particles. Antimeasles antibodies markedly suppressed the expression of viral antigens and giant cells, and the effect was totally reversible. When the cells were cultured at 33 degrees C, the number of giant cells began to diminish and ultimately disappeared; in contrast, when cultured at 39 degrees C, the cultures invariably lysed. Yields at 33 degrees C were ca. 2 logs lower than those at 39 degrees C. Cells cultured at 33 degrees C produced relatively high levels of interferon, whereas those at 39 degrees C produced little or no interferon. When the persistently infected cultures were exposed to anti-interferon alpha/beta serum at a nonpermissive temperature, there was a marked increase in multinucleate cells, suggesting that maintenance of the persistence state and its regulation by temperature may be related to the production of interferon. Viral isolates from cells cultured at 39 degrees C were obtained, and 90% of viral clones were found to be cold sensitive. Complementation studies with different viral clones indicated that the cold-sensitive defect was probably associated with the same genetic function. Western blot analysis of the persistently infected cells indicated a significant diminution and expression of all measles-specific proteins at a nonpermissive temperature. Infection of NS20Y neuroblastoma cells with the cold-sensitive virus isolates resulted in the development of an immediate persistent infection, whereas infection of Vero or HeLa cells resulted in a characteristic lytic infection, suggesting that the cold-sensitive mutants may be selected or adapted for persistent infection in cells of neural origin.  相似文献   

9.
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20 degrees C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log(10) PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5 degrees C; a 5-min pressure treatment of 350 MPa at 30 degrees C inactivated 1.15 log(10) PFU of virus, while the same treatment at 5 degrees C resulted in a reduction of 5.56 log(10) PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5 degrees C and 20 degrees C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5 degrees C was sufficient to inactivate 4.05 log(10) PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

10.
An autosomal dominant congenital cataract in human is associated with mutation of Arg-116 to Cys (R116C) in alpha A-crystallin. To investigate the molecular basis of cataract formation, rat alpha A-crystallin cDNA was cloned into pET-23d(+), and the site-directed mutants S142C (similar to wild-type human alpha A) and R116C/S142C or R116C (similar to human R116C variant) were generated. These were expressed in E. coli and the recombinant alpha A-crystallins purified by Sephacryl size-exclusion chromatography. The chaperone-like function of mutant R116C determined at 37 degrees C with insulin and alcohol dehydrogenase as target proteins was about 40% lower than those of wild-type and mutant S142C. Based on size-exclusion chromatography data, the oligomeric size of the R116C mutant was about 2000 kDa at 25 degrees C, 1400 kDa at 37 degrees C, and 900 kDa at 45 degrees C. In comparison, alpha A-wild-type and alpha A-S142C ranged from 477 to 581 kDa. Heat stability studies corroborated the effect of temperature on the dynamic quaternary structure of the R116C mutant. Circular dichroism spectra showed secondary and tertiary structural changes, and ANS fluorescence spectra showed loss of surface hydrophobicity in the R116C mutant. These findings suggest that the molecular basis for the congenital cataract with the alpha A-R116C mutation is due to the generation of a highly oligomerized alpha A-crystallin having a modified structure and decreased chaperone-like function.  相似文献   

11.
Extracellular Corynebacterium lipase was produced using a 2.5 L Chemap fermentor using 1300 ml fermentation medium at temperature 33 degrees C, agitator speed 50 rpm, aeration rate 1 VVM having KLa 16.21 hr(-1). Crude lipase was purified by salting out method followed by dialysis and immobilized using calcium alginate gel matrix followed by glutaraldehyde cross linking Purification process increased specific activity of enzyme from 2.76 to 114.7 IU/mg. Activity of immobilized enzyme was 107.31 IU/mg. Optimum temperature for purified and immobilized enzyme activity were 65 degrees and 50 degrees C respectively. Optimum pH was 8.0 in both the cases, Km and Vmax value for purified lipase were 111.1 micromol/min and 14.7% respectively. Ca2+ (5 mM) was found to be stimulator for enzyme activity. Immobilized lipase retained 68.18% of the original activity when stored for 40 days.  相似文献   

12.
K Poole  V Braun 《Journal of bacteriology》1988,170(11):5146-5152
Log-phase cells of Serratia marcescens cultured at 30 degrees C were approximately 10-fold more hemolytic than those grown at 37 degrees C. By using a cloned gene fusion of the promoter-proximal part of the hemolysin gene (shlA) to the Escherichia coli alkaline phosphatase gene (phoA), hemolysin gene expression as a function of alkaline phosphatase activity was measured at 30 and 37 degrees C. No difference in alkaline phosphatase activity was observed as a function of growth temperature, although more hemolysin was detectable immunologically in whole-cell extracts of cells grown at 30 degrees C. The influence of temperature was, however, growth phase dependent, because the hemolytic activities of cells cultured to early log phase at 30 and 37 degrees C were comparable. Given the outer membrane location of the hemolysin, lipopolysaccharide (LPS) was examined as a candidate for mediating the temperature effect on hemolytic activity. Silver staining of LPS in polyacrylamide gels revealed a shift towards shorter O-antigen molecules at 37 degrees C relative to 30 degrees C. Moreover, there was less binding of O-antigen-specific bacteriophage to S. marcescens with increasing growth temperature, a finding consistent with temperature-mediated changes in LPS structure. Smooth strains of S. marcescens were 20- to 30-fold more hemolytic than rough derivatives, a result confirming that changes in LPS structure can influence hemolytic activity. The alkaline phosphatase activity of rough strains harboring the shlA-phoA fusion was threefold lower than that of smooth strains harboring the fusion plasmids, a result consistent with a decrease in hemolysin gene expression in rough strains. The absence of a similar effect of temperature on gene expression may be related to less-marked changes in LPS structure as a function of temperature compared with a smooth-to-rough mutational change.  相似文献   

13.
Environmental variables, such as temperature, are important in determining the efficiency of biological control in ornamental crops. This paper examines the effect of temperature on the functional response of adult female Phytoseiulus persimilis to eggs of the spider mite, Tetranychus urticae. The functional response was determined using a new functional response assay technique with plant stems as an arena, rather than leaf discs. The use of plant stems allows the influence that plant structure has on predation to be incorporated into the assay. Control assays were also used (without predators) to estimate natural losses of prey. The data were analysed using a binomial model, with the use of Abbot's formula to correct for the losses in the controls. A combined equation to describe the effect of temperature and prey density on the predation rate of Phytoseiulus persimilis was derived. The results showed that more prey are eaten as the temperature increases from 15 degrees C to 25 degrees C, but the number of prey eaten then declines at 30 degrees C, although not to the levels seen at 20 degrees C. The implication of these results for biological control in ornamental crops, where the temperature can often exceed 30 degrees C, is discussed.  相似文献   

14.
It was shown that the temperature sensitivity of shortening velocity of skeletal muscles is higher at temperatures below physiological (10-25 degrees C) than at temperatures closer to physiological (25-35 degrees C) and is higher in slow than fast muscles. However, because intact muscles invariably express several myosin isoforms, they are not the ideal model to compare the temperature sensitivity of slow and fast myosin isoforms. Moreover, temperature sensitivity of intact muscles and single muscle fibers cannot be unequivocally attributed to a modulation of myosin function itself, as in such specimen myosin works in the structure of the sarcomere together with other myofibrillar proteins. We have used an in vitro motility assay approach in which the impact of temperature on velocity can be studied at a molecular level, as in such assays acto-myosin interaction occurs in the absence of sarcomere structure and of the other myofibrillar proteins. Moreover, the temperature modulation of velocity could be studied in pure myosin isoforms (rat type 1, 2A, and 2B and rabbit type 1 and 2X) that could be extracted from single fibers and in a wide range of temperatures (10-35 degrees C) because isolated myosin is stable up to physiological temperature. The data show that, at the molecular level, the temperature sensitivity is higher at lower (10-25 degrees C) than at higher (25-35 degrees C) temperatures, consistent with experiments on isolated muscles. However, slow myosin isoforms did not show a higher temperature sensitivity than fast isoforms, contrary to what was observed in intact slow and fast muscles.  相似文献   

15.
Y Liu  J Li  J Chen  T Cao 《应用生态学报》2000,11(5):687-692
The net photosynthesis of Thuidium cymbifolium and Chrysocladium retrorsum, two species of wintering host mosses for gullaphids, and its response to light, temperature and water content were measured with CI-301PS(CID Inc. USA) both in winter and spring. The photosynthetic capacity of Thuidium cymbifolium and Chrysocladium retrorsum was about 141 and 117 mumolCO2kg-1dw.s-1, respectively, and trended to increase from winter to spring. The light saturation point of these two mosses at 800-900 mumol.m-2.s-1 was much higher than that of many other mosses, and the compensation point ranged from 40 to 50 mumol.m-2.s-1. The temperature response curves of these two mosses were similar, with optium temperature ranging from 25 to 36 degrees C in spring, and from 20 to 30 degrees C in winter. When the temperature was below the freezing point(-15 to 0 degree C), they both maintained a distinct net photosynthesis, with the optimum water content ranging from 200 to 300(400)% dw. The photosynthesis started to be restrained evidently, when the water content declined to about 150% dw. The gas exchange ceased or became negative, when the water content was as low as 40-50% dw. It can be inferred that these two species might be both poikilothermal and poikilohydric organisms, but the resistibility of T. cymbifolium to intense light and high temperature was higher than that of C. retrorsum.  相似文献   

16.
The esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus is a monomeric protein with a molecular weight of about 35.5 kDa. The enzyme is barely active at room temperature, displaying the maximal enzyme activity at about 80 degrees C. We have investigated the effect of the temperature on the protein structure by Fourier-transform infrared spectroscopy. The data show that between 20 degrees C and 60 degrees C a small but significant decrease of the beta-sheet bands occurred, indicating a partial loss of beta-sheets. This finding may be surprising for a thermophilic protein and suggests the presence of a temperature-sensitive beta-sheet. The increase in temperature from 60 degrees C to 98 degrees C induced a decrease of alpha-helix and beta-sheet bands which, however, are still easily detected at 98 degrees C indicating that at this temperature some secondary structure elements of the protein remain intact. The conformational dynamics of the esterase were investigated by frequency-domain fluorometry and anisotropy decays. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the protein was well represented by the three-exponential model, and that the temperature affected the protein conformational dynamics. Remarkably, the tryptophanyl fluorescence emission reveals that the indolic residues remained shielded from the solvent up to 80 degrees C, as shown from the emission spectra and by acrylamide quenching experiments. The relationship between enzyme activity and protein structure is discussed.  相似文献   

17.
Aqueous dispersons of L-alpha-phosphatidylethanolamine (PE) with identical saturated acyl chains are known to exhibit gel-state metastability. It is also known that the metastability in PE becomes more pronounced with decreasing acyl chain-length. In an attempt to study the metastable phase behavior of PE, we have synthesized diundecanoylphosphatidylethanolamine (diC11PE) and examined its polymorphic phase behavior. A single endothermic transition at 38 degrees C is detected between 10 and 55 degrees C by DSC for the nonheated sample of diC11PE in excess water. An immediate second heating scan done after cooling slowly of the same sample from the liquid-crystalline state shows a smaller endothermic transition at a lower temperature, 18 degrees C. However, the high-temperature transition at 38 degrees C can be detected, if the sample which has been heated above 38 degrees C is quench cooled from the liquid-crystalline to a temperature between 18 and 38 degrees C. Furthermore, two endothermic transitions at 18 and 38 degrees C and an exothermic transition at 19 degrees C are recorded for diC11PE after quench supercooling of the sample from the liquid-crystalline state to an appropriate temperature below 10 degrees C. The gel-state metastability of diC11PE can be most appropriately explained in terms of changes in interbilayer headgroup-headgroup interactions. It is suggested that the kinetically trapped supercooled metastable state may be a multilamellar structure with melted acyl chains but with strong interbilayer headgroup-headgroup interactions.  相似文献   

18.
Zhang Y  Xu X  Zhang L 《Biopolymers》2008,89(10):852-861
The gelation behavior of the triple-helical polysaccharide lentinan fractions having different molecular weights in water at 25 degrees C were studied by using a rheometer. The analysis of concentration and molecular weight dependence of shear stress and shear viscosity showed that aqueous lentinan is a typical shear-thinning fluid, possessing potential as a viscosity control agent, and that a weak gel with entangled network structure formed. The dynamic oscillatory behavior of lentinan in the temperature range of 1-15 degrees C was also investigated by rheologic method. The storage modulus G' and complex viscosity eta* increased first with decreasing temperature, and underwent a maximum centered at 7-9 degrees C, and then decreased with further decreasing temperature. This abnormal phenomenon was ascribed to formation of rigid structure in the gel state, which was confirmed by the experimental results from micro-DSC. The micro-DSC curves showed that an endothermic peak appeared at 7-9 degrees C for lentinan in water upon heating, which was attributable to the intramolecular order-disorder structure transition similar to triple-helical polysaccharide schizophyllan. Namely, at lower temperature, the side glucose residues of lentinan (triplix II) formed a well-organized triple-helical structure (triplix I) through hydrogen-bonding with the surrounding water molecules. Moreover, this conformation transition was proved to be thermally reversible. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 852-861, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

19.
Cheung YY  Lam SY  Chu WK  Allen MD  Bycroft M  Wong KB 《Biochemistry》2005,44(12):4601-4611
Acylphosphatases catalyze the hydrolysis of the carboxyl-phosphate bond in acyl phosphates. Although acylphosphatase-like sequences are found in all three domains of life, no structure of acylphosphatase has been reported for bacteria and archaea so far. Here, we report the characterization of enzymatic activities and crystal structure of an archaeal acylphosphatase. A putative acylphosphatase gene (PhAcP) was cloned from the genomic DNA of Pyrococcus horikoshii and was expressed in Escherichia coli. Enzymatic parameters of the recombinant PhAcP were measured using benzoyl phosphate as the substrate. Our data suggest that, while PhAcP is less efficient than other mammalian homologues at 25 degrees C, the thermophilic enzyme is fully active at the optimal growth temperature (98 degrees C) of P. horikoshii. PhAcP is extremely stable; its apparent melting temperature was 111.5 degrees C and free energy of unfolding at 25 degrees C was 54 kJ mol(-)(1). The 1.5 A crystal structure of PhAcP adopts an alpha/beta sandwich fold that is common to other acylphosphatases. PhAcP forms a dimer in the crystal structure via antiparallel association of strand 4. Structural comparison to mesophilic acylphosphatases reveals significant differences in the conformation of the L5 loop connecting strands 4 and 5. The extreme thermostability of PhAcP can be attributed to an extensive ion-pair network consisting of 13 charge residues on the beta sheet of the protein. The reduced catalytic efficiency of PhAcP at 25 degrees C may be due to a less flexible active-site residue, Arg20, which forms a salt bridge to the C-terminal carboxyl group. New insights into catalysis were gained by docking acetyl phosphate to the active site of PhAcP.  相似文献   

20.
Electron spin resonance (ESR) and spin label methods with 5-doxylstearic acid as a probe were used to investigate the structure of microvillus membrane from the small intestine of adult and newborn rabbits. The spin label in microvillus membrane of newborns appeared to be in a more disordered environment than spin label in microvillus membrane of adult animals in the temperature range from 4 to 56 degrees C. In addition, a temperature transition at 39.6 +/- 0.3 degrees C was observed in the temperature dependence of the hyperfine splitting parameter for microvillus membrane from adult animals whereas a linear temperature dependence of the hyperfine splitting parameter was found for microvillus membrane from newborns. Cholera toxin was used as an external stimulus to test for the structural response in these two membrane preparations. Cholera toxin at 6 pM caused a decrease in the hyperfine splitting parameter at temperatures below 40 degrees C and a shift in the temperature break from 39.6 degrees C to 30.7 degrees C in microvillus membrane from adults. Using microvillus membrane from newborns, the temperature dependence of the hyperfine splitting parameter remained linear with a cholera toxin stimulus and the disordering effect of cholera toxin was only observed below 30 degrees C. These studies suggested that microvillus membrane from newborns were inherently more disordered than microvillus membrane from adult animals and that this difference in membrane organization might in part account for the increased attachment and penetration of macromolecules noted during the perinatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号