首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary cDNA clones were isolated from tissue specific cDNA libraries of barley and maize using as a probe the cDNA of the maize gene C1, a regulator of anthocyanin gene expression. C1-related homology for all of the four cDNAs characterized by sequence analysis is restricted to the N-terminal 120 amino acids of the putative proteins. This region shows striking homology to the N-proximal domain of the myb oncoproteins from vertebrates and invertebrates. Within the myb proto-oncogene family this part of the respective gene products functions as a DNA binding domain. Acidic domains are present in the C-proximal protein segments. Conservation of these sequences, together with the genetically defined regulator function of the C1 gene product, suggest that myb-related plant genes code for trans-acting factors which regulate gene expression in a given biosynthetic pathway.  相似文献   

3.
The co-ordination of expression of anthocyanin biosynthetic genes was studied in developing flowers. Four genes encoding enzymes operating late in the anthocyanin biosynthetic pathway are induced together during flower development but the early steps appear to be induced more rapidly. Co-ordination of expression could imply a common regulatory mechanism controlling the expression of metabolically related genes. The data presented here show that while four genes may share such a mechanism for the control of their expression during flower development, different control processes regulate the early steps of the pathway. Spatially, gene expression is patterned across the flower and appears to be very similar for all the biosynthetic genes. However, the observed influence of the regulatory gene Delila shows that the spatial co-ordination of gene expression must involve more than one regulatory system. Delila itself appears to have a dual function, being required for activation of expression of the later genes in the flower tube but repressing chalcone synthase gene expression in the mesophyll of the corolla lobes. It is postulated that common signals induce the expression of genes in the pathway during flower development. The data presented here suggest that the same regulatory mechanism interprets these signals for four of the genes encoding the later biosynthetic enzymes, but that different or modified mechanisms interpret the signals to control expression of chalcone synthase and chalcone isomerase genes in Antirrhinum flowers.  相似文献   

4.
5.
6.
7.
The R and B genes of maize regulate the anthocyanin biosynthetic pathway and constitute a small gene family whose evolution has been shaped by polyploidization and transposable element activity. To compare the evolution of regulatory genes in the distinct but related genomes of rice and maize, we previously isolated two R homologues from rice (Oryza sativa). The Ra1 gene on chromosome 4 can activate the anthocyanin pathway, whereas the Rb gene, of undetermined function, maps to chromosome 1. In this study, rice R genes have been further characterized. First, we found that an Rb cDNA can induce pigmentation in maize suspension cells. Second, another rice R homologue (Ra2) was identified that is more closely related to Ra1 than to Rb. Domesticated rice and its wild relatives harbor multiple Ra-like and Rb-like genes despite the fact that rice is a true diploid with the smallest genome of all the grass species analyzed to date. Finally, several miniature inverted-repeat transposable elements (MITEs) were found in R family members. Their possible role in hastening the divergence of R genes is discussed.  相似文献   

8.
9.
10.
11.
12.
13.
By screening for new seed color mutations, we have identified a new gene, pale aleurone color1 (pac1), which when mutated causes a reduction in anthocyanin pigmentation. The pac1 gene is not allelic to any known anthocyanin biosynthetic or regulatory gene. The pac1-ref allele is recessive, nonlethal, and only reduces pigment in kernels, not in vegetative tissues. Genetic and molecular evidence shows that the pac1-ref allele reduces pigmentation by reducing RNA levels of the biosynthetic genes in the pathway. The mutant does not reduce the RNA levels of either of the two regulatory genes, b and c1. Introduction of an anthocyanin structural gene promoter (a1) driving a reporter gene into maize aleurones shows that pac1-ref kernels have reduced expression resulting from the action of the a1 promoter. Introduction of the reporter gene with constructs that express the regulatory genes b and c1 or the phlobaphene pathway regulator p shows that this reduction in a1-driven expression occurs in both the presence and absence of these regulators. Our results imply that pac1 is required for either b/c1 or p activation of anthocyanin biosynthetic gene expression and that pac1 acts independently of these regulatory genes.  相似文献   

14.
15.
The functional association of flavonoids with plant stress responses, though widely reported in the literature, remains to be documented in rice. Towards this end we chose a transgenic approach with well characterized regulatory and structural genes from maize involved in flavonoid biosynthesis. Activation of anthocyanin pathway in rice was investigated with the maize genes. Production of purple anthocyanin pigments were observed in transformed Tp309 (a japonica rice variety) calluses upon the introduction of the maize regulatory genes C1 (coloured-1), R (red) and the structural gene C2 (coloured-2, encoding chalcone synthase). In addition, stable transgenic plants carrying the maize C2 gene under the control of the maize Ubiquitin promoter were generated. A localized appearance of purple/red pigment in the leaf blade and leaf sheath of R0 C2 transgenic seedlings was observed. Such a patchy pattern of the transgene expression appears to be conditioned by the genetic background of Tp309, which is homozygous for dominant color inhibitor gene(s) whose presence was unravelled by appropriate genetic crosses. Southern blot analysis of the transgenic plants demonstrated that c2 cDNA was integrated into the genome. Western blot analysis of these primary transgenics revealed the CHS protein while it was not detected in the control untransformed Tp3O9, suggesting that Tp309 might have a mutation at the corresponding C2 locus or that the expression of this gene is suppressed in Tp309. Further analysis of C2 transgenics revealed CHS protein only in three out of sixteen plants that were western-positive in the R0 generation, suggesting gene silencing. Preliminary screening of these R1 plants against the rice blast fungus Magnaporthe grisea revealed an increase in resistance.  相似文献   

16.
17.
Transcriptional regulation of anthocyanin biosynthesis in red cabbage   总被引:6,自引:0,他引:6  
Youxi Yuan  Li-Wei Chiu  Li Li 《Planta》2009,230(6):1141-1153
  相似文献   

18.
花青素广泛分布于高等植物中,是一种水溶性的植物色素,与农作物的多种品质性状密切相关。虽长期受到关注,但其生物合成途径则是近年来随着拟南芥等植物突变体研究的深入才取得突破的。对于花、果实和种子中的花青素研究始终是热点,近来国内外有很多关于花青素合成与基因调控发明研究的报道。随着研究的深入不仅可以为医疗保健等提供科学依据,而且有助于其在农业生产中应用。本文综述了植物花青素基因的研究现状和发展趋势,包括植物花青素生物合成途径,生物合成途径中相关转录因子的调控,以及已经分离和克隆的调控基因在功能方面的研究进展。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号