首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the calcium-sensing receptor (CaSR) has previously been demonstrated in human circulating monocytes (HCM). The present study was designed to measure CaSR expression in HCM and to examine its potential modulation by pro-inflammatory cytokines, Ca2+, vitamin D sterols in U937 cell line. Twenty healthy volunteers underwent blood sampling with subsequent isolation of peripheral blood mononuclear cells (PBMC) at 3 visits. Flow cytometry analysis (FACS) was performed initially (V1) and 19 days later (V2) to examine intra- and intersubject fluctuations of total and surface CaSR expression in HCM and 15 weeks later (V3) to study the effect of vitamin D supplementation. In vitro experiments were conducted to assess the effects of pro-inflammatory cytokines, calcidiol, calcitriol and Ca2+ on CaSR expression in U937 cell line. By FACS analysis, more than 95% of HCM exhibited cell surface CaSR staining. In contrast, CaSR staining failed to detect surface CaSR expression in other PBMC. After cell permeabilization, total CaSR expression was observed in more than 95% of all types of PBMC. Both total and surface CaSR expression in HCM showed a high degree of intra-assay reproducibility (<3%) and a moderate intersubject fluctuation. In response to vitamin D supplementation, there was no significant change for both total and surface CaSR expression. In the in vitro study, U937 cells showed strong total and surface CaSR expression, and both were moderately increased in response to calcitriol exposure. Neither total nor surface CaSR expression was modified by increasing Ca2+ concentrations. Total CaSR expression was concentration dependently decreased by TNFα exposure. In conclusion, CaSR expression can be easily measured by flow cytometry in human circulating monocytes. In the in vitro study, total and surface CaSR expression in the U937 cell line were increased by calcitriol but total CaSR expression was decreased by TNFα stimulation.  相似文献   

2.
Clonal strains of rat pituitary tumour (GH4C1) cells are known to possess specific intracellular binding sites for calcitriol (1,25-dihydroxycholecalciferol, 1,25-dihydroxyvitamin D3). GH4C1 cells respond to calcitriol by a selective increase in prolactin(PRL)-gene expression. The interaction between calcitriol and glucocorticoids was studied by using this cultured-cell model. It was found that cortisol potently antagonized the induction of PRL mRNA and PRL production by calcitriol. The effects were concentration-dependent and were evident at glucocorticoid concentrations that did not alter basal PRL production. Inhibition was half-maximal at 3.2 nM-cortisol and 0.4 nM-dexamethasone. Calcitriol-induced PRL mRNA fell by more than 50% at 25 h and reached the control level 50 h after treatment with cortisol. The inhibition by cortisol of calcitriol induction of PRL production was selective when compared with effects on other inducers of PRL-gene expression [thyroliberin, epidermal growth factor and phorbol myristate acetate ('12-omicron-tetradecanoylphorbol 13-acetate')]. Potent antagonism by glucocorticoids of vitamin D action on specific gene expression has been demonstrated. Further studies with this cultured-cell model may help to explain the mechanism of this hormonal interaction, which assumes particular importance at major sites of vitamin D action such as the intestine.  相似文献   

3.
Previous studies demonstrated that human circulating monocytes can proliferate in vitro when incubated with lectin-induced factor(s) from lymphocytes [(1985) Biochem. Biophys. Res. Commun., in press]. This study shows that human monocytes were induced to proliferate when incubated with 1 alpha,25-dihydroxyvitamin D3 (calcitriol) at physiological concentrations. The optimal dose was about 10 nM. Proliferative activity was examined both by measuring the [3H]thymidine incorporation and by counting cell nuclei. Among other derivatives of vitamin D3, 1 alpha,24R-dihydroxyvitamin D3 and 1 alpha,24R,25-trihydroxyvitamin D3 stimulated mitotic activity of monocytes. Addition of both calcitriol and lectin-stimulated lymphocyte-conditioned medium to the monocyte culture had an additional effect on the mitotic activity of monocytes.  相似文献   

4.
5.
6.
It is estimated that 1 billion people around the world are vitamin D deficient. Vitamin D deficiency has been linked to various inflammatory diseases. However, the mechanism by which vitamin D reduces inflammation remains poorly understood. In this study, we investigated the inhibitory effects of physiologic levels of vitamin D on LPS-stimulated inflammatory response in human blood monocytes and explored potential mechanisms of vitamin D action. We observed that two forms of the vitamin D, 1,25(OH)(2)D(3), and 25(OH)D(3), dose dependently inhibited LPS-induced p38 phosphorylation at physiologic concentrations, IL-6 and TNF-α production by human monocytes. Upon vitamin D treatment, the expression of MAPK phosphatase-1 (MKP-1) was significantly upregulated in human monocytes and murine bone marrow-derived macrophages (BMM). Increased binding of the vitamin D receptor and increased histone H4 acetylation at the identified vitamin D response element of the murine and human MKP-1 promoters were demonstrated. Moreover, in BMM from MKP1(-/-) mice, the inhibition of LPS-induced p38 phosphorylation by vitamin D was completely abolished. Vitamin D inhibition of LPS-induced IL-6 and TNF-α production by BMM from MKP-1(-/-) mice was significantly reduced as compared with wild-type mice. In conclusion, this study identified the upregulation of MKP-1 by vitamin D as a novel pathway by which vitamin D inhibits LPS-induced p38 activation and cytokine production in monocytes/macrophages.  相似文献   

7.
8.
Eldecalcitol [1α,25‐dihydroxy‐2β‐(3‐hydroxypropyloxy)vitamin D3], a vitamin D analog with enhanced efficacy for treatment of osteoporosis, has been found to be less potent than 1,25‐dihydroxyvitamin D3 (calcitriol) in suppressing PTH in vivo. To define the mechanism for the latter observation, we compared the effects of eldecalcitol and calcitriol on PTH secretion by bovine parathyroid cells. While the two compounds showed similar potency when the cells were cultured in medium containing 15% newborn calf serum, eldecalcitol was 100 times more potent than calcitriol in the absence of serum. Eldecalcitol has a higher affinity for the serum vitamin D‐binding protein (DBP), and therefore binding to DBP, and possibly other serum components, appears to limit the uptake and activity of eldecalcitol in parathyroid cells, providing an explanation for the lower PTH suppressing activity in vivo (100% serum). However, the 100‐fold higher activity of eldecalcitol in the absence of serum was unexpected since the VDR affinity for eldecalcitol is eightfold lower than for calcitriol. The enhanced activity was not due to preferential uptake, but to a resistance to metabolism. While 1 nM [3H]calcitriol was completely degraded within 24 h, [3H]eldecalcitol was not metabolized, despite the induction of the vitamin D catabolic enzyme, 24‐hydroxylase (CYP24A). The resistance to metabolism is the likely explanation for the higher potency of eldecalcitol in suppressing PTH in cell culture lacking serum. Thus, the unique properties of eldecalcitol in vivo can be attributed, at least in part, to its high‐DBP affinity which increases the half‐life, but limits the uptake of eldecalcitol, and to its reduced metabolism, which prolongs the activity of this analog in target tissues. J. Cell. Biochem. 112: 1348–1352, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

10.
11.
By a structural combination of phosphonate and bisphosphonate moieties with the vitamin D skeleton a series of new vitamin D analogs was synthesized. Derivatives with 24beta-hydroxy- or 24-keto groups exerted considerable vitamin D activities in vitro while the hypercalcemic potentials were significantly reduced as compared to 1alpha,25-dihydroxyvitamin D(3) (calcitriol). Whereas the 24-hydroxy analogs did not influence bone formation in vivo in dosages below the hypercalcemic threshold, the 24-ketones were found to induce synthesis of new bone matrix in non-hypercalcemic doses. Vitamin D bisphosphonate hybrids, on the other hand, which did not elicit substantial vitamin D activities in vitro and tend to decrease serum calcium levels in vivo clearly induced osteoid formation in rats, indicating a mechanism of action different to calcitriol.  相似文献   

12.
1α,25-dihydroxyvitamin D3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naïve B cells. Naïve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naïve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naïve B cells, namely by reducing CD40 signaling.  相似文献   

13.
14.
15.
Recent studies have demonstrated that 1,25-dihydroxyvitamin D3 (calcitriol), the most biologically active metabolite of vitamin D, is a potent inhibitor of both lectin- and antigen-driven human T lymphocyte proliferation. To better characterize this effect, we performed cell cycle analysis of both untreated and calcitriol-treated peripheral blood mononuclear cells after PHA stimulation. By using the metachromatic dye acridine orange and flow cytometry, we found that calcitriol blocks the transition from the early, low RNA compartment of G1 (G1A) to the late, higher RNA compartment of G1 (G1B). Consistent with this observation was the inability of exogenous IL 1 or phorbol myristic acetate to overcome calcitriol's suppression of DNA synthesis. Indomethacin slightly reversed calcitriol's inhibition of transition from early to late G1, suggesting a minor, prostaglandin-dependent component to calcitriol's antiproliferative activity. Finally, by using the monoclonal antibodies anti-Tac and OKT9, we found that calcitriol had no effect on IL 2 receptor expression, an early G1 event, but markedly inhibited transferrin receptor expression, an IL 2-dependent, late G1 event. Thus, analysis of calcitriol's effects on the expression of these T cell activation antigens provides further evidence of the cell cycle specificity of calcitriol's action in regulating human T lymphocyte proliferation.  相似文献   

16.
Decreased intestinal absorption of Ca2+ occurs in response to treatment with disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP). The effect is due to decreased 1-hydroxylation of calcidiol (25-hydroxycholecalciferol) in the kidney. In an attempt to establish whether impairment of vitamin D metabolism at steps beyond kidney hydroxylation occurs due to treatment with EHDP, chicks were depleted of vitamin D and were treated with calcitriol (1,25-dihydroxycholecalciferol) as their sole source of the vitamin. The chicks were then divided into two groups, one being treated with EHDP while the second group served as control. Intestinal absorption of Ca2+ in the EHDP-treated group was found to be impaired, along with decreases in concentrations of calbindin D28K (the 28,000-Mr vitamin D-dependent Ca2+-binding protein). When the chicks were dosed with [3H]calcitriol, significantly lower concentrations of the sterol were detected in the duodena of EHDP-treated birds. Measurement of levels of receptors for calcitriol in duodena showed no difference between groups, but levels of calcitriol in sera were considerably lower in the EHDP-treated group along with the elevated biliary and urinary excretion of glucuronidated conjugates. It is therefore concluded that treatment with EHDP results in increased catabolism of calcitriol in addition to the known suppression of the renal production of the hormone.  相似文献   

17.
The purpose of the present study was to compare the phenotype of tissue macrophages with that of their precursors in the bone marrow and blood. The phenotype was determined on the basis of the quantitative binding of monoclonal antibodies to cell-surface antigens (antigen F4/80, complement receptor III, Fc receptor II, Ia antigen, common leukocyte antigen, and Mac-2 and Mac-3 antigens) on individual mononuclear phagocytes. Monoclonal antibody binding to cells, detected by the biotin-avidin immunoperoxidase procedure, was quantitated by cytophotometric determination of the amount of enzyme reaction product on cells. The results of this quantitation are expressed as the median of the specific absorbance per unit of cell-surface area (0.25 micron2) and per cell. Shortly after collection of the mononuclear phagocytes, binding of all monoclonal antibodies except those directed against the common leukocyte and Mac-2 antigens to peritoneal macrophages was enhanced compared with binding to blood monocytes; for alveolar macrophages we found reduced binding of monoclonal antibodies F4/80 and M1/70 (complement receptor III) and enhanced binding of monoclonal antibodies with specificity for the common leukocyte antigen and Mac-2 and Mac-3 antigens. The results obtained with cultured mononuclear phagocytes show that during the development from monoblast to tissue macrophages, monoclonal antibody binding to the various types of mononuclear phagocyte, expressed per unit of cell-surface area, was not significantly altered except that of M3/38 (Mac-2 antigen) to peritoneal macrophages and that of F4/80 and M1/70 (complement receptor III) to alveolar macrophages. Expressed on a per cell basis, the results show an increase in the binding of all monoclonal antibodies except those directed against the Fc receptor II and Mac-3 antigen during the development from promonocytes to peritoneal macrophages; binding of most monoclonal antibodies to alveolar macrophages was considerably lower than that to blood monocytes. It is concluded that the expression of the various cell-surface antigens alters during mononuclear phagocyte differentiation. The expression changed also during culture, although distinct patterns of alteration could not be distinguished.  相似文献   

18.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

19.
Effective chemotherapy for pancreatic cancer is urgently needed. The aim of this study was to compare the anti-proliferative activity on pancreatic cancer cell lines of the vitamin D(3) analog, 22-oxa-1,25-dihydroxyvitamin D(3), maxacalcitol, with that of 1,25-dihydroxyvitamin D(3), calcitriol, with analysis of vitamin D receptor status and the G(1)-phase cell cycle-regulating factors. Antiproliferative effects of both agents were compared using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and by measuring the tumor size of xenografts inoculated into athymic mice. Scatchard analysis of vitamin D receptor contents, and mutational analysis of receptor complementary DNA were performed. Levels of expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, p21 and p27, were analysed by western blotting. In vitro, maxacalcitol and calcitriol markedly inhibited the proliferation and caused a G(1) phase cell cycle arrest with the appearance of numerous domes. In vivo, maxacalcitol inhibited the growth of BxPC-3 xenografts more significantly than calcitriol, without inducing hypercalcemia. Responsive cells had abundant functional vitamin D receptors. However, Hs 766T, showing no response to either agent, had the second highest receptor contents with no abnormalities in its primary structure deduced by receptor complementary DNA. In the responsive cells, p21 and p27 were markedly up-regulated after 24h of treatment with both agents. In non-responsive cells, no such changes were observed. In conclusion, maxacalcitol and calcitriol up-regulate p21 and p27 as an early event, which in turn could block the G(1)/S transition and induce growth inhibition in responsive cells, and maxacalcitol may provide a more useful tool for the chemotherapy of pancreatic cancer than calcitriol because of its low toxicity.  相似文献   

20.
Nishii Y  Okano T 《Steroids》2001,66(3-5):137-146
In 1981 Suda and his colleagues first reported the new activity of calcitriol namely its ability to differentiate the myeloid leukemia cells into normal monocytes-macrophages. However, the possibility of using calcitriol as an antileukemic drug was not feasible because of its potent calcemic effects. Based on these observations, several pharmaceutical companies initiated the synthesis of vitamin D analogs with the aim to separate the calcemic actions of calcitriol from its actions on regulating the cell growth and differentiation. As a result, numerous noncalcemic analogs with a potential for the treatment of leukemia and other cancers were synthesized. The group at Chugai introduced two characteristic analogs of opposite type namely, 22-oxacalcitriol (OCT) and 2beta-(3-hydroxypropoxy)calcitriol (ED-71) which have been shown to have therapeutic value and are already being used clinically. The work on OCT and ED-71 together with the work on calcipotriol and KH-1060 by Leo Laboratories, and 1alpha,25(OH)(2)-16-ene-23-yne-D(3) by Hoffmann-La Roche, vigorously stimulated research world-wide in the development of vitamin D analogs into pharmaceutical products. More recently new impressive vitamin D analogs such as 3-epi analogs, 19-nor analogs, 18-nor analogs, 2-methyl-20-epi-calcitriol, non-steroidal vitamin D analogs are being developed. The authors are convinced that various vitamin D analogs will become highly effective therapeutic agents at the clinical level in the new century, and also that a new theory on the mechanism of vitamin D action will be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号