首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hybrid plasmid pJS37 is composed of the streptococcal plasmid pLS1, which confers tetracycline resistance, and the staphylococcal plasmid pC194, which confers chloramphenicol resistance. When gram-positive bacteria containing pJS37 were grown in the presence of chloramphenicol, four different deleted derivatives accumulated. The deletions in the plasmid enhanced resistance to chloramphenicol by placing the cat gene of pC194 near promoters of pLS1. All four deletions shared a common endpoint that corresponded to the putative target site for DNA strand nicking by the pC194 replication protein, RepH. At the other, variable endpoint, the DNA sequence was similar to the putative RepH target sequence. Alteration of the RepH protein, by in vitro modification of the gene encoding it, eliminated this class of deletions. By extending a previously proposed model for the generation of a different but related class of deletions (B. Michel and S.D. Ehrlich, EMBO J. 5:3691-3696, 1986), a comprehensive model that could generate both classes of deletions is suggested. It proposes that a nicking-closing activity of the plasmid replication protein at its normal target site and, aberrantly, at sites with similar sequence can generate deletions either proximal or distal to the aberrant site during rolling-circle replication of the plasmid.  相似文献   

2.
Temperature-sensitive replication (Tsr) mutants have been isolated from the Staphylococcus aureus plasmid pC194. For three of the four mutant plasmids tested (pSAO801, pSAO802, and pSAO804) the segregation kinetics suggested a complete block of plasmid replication at 43 degrees C. The replication defects of three mutant plasmids: pSAO802, pSAO803, and pSAO804 could be complemented by recombinant plasmids carrying a segment from either the wild type or the other mutant, pSAO801. There was no complementation when the segment carried by the recombinant plasmid was derived from one of the three complementable mutants. These data were taken as evidence for the involvement of a diffusible, plasmid-encoded product, RepH, in pC194 replication. The complementation of the fourth Tsr mutant, pSAO801, could not be tested due to an abnormal susceptibility of this mutant to the incompatibility expressed by recombinants carrying segments derived from pC194 or its mutants. A single mutation was found to be responsible for both pSAO801 instability and its altered incompatibility properties but the nature of the defect has not yet been elucidated.  相似文献   

3.
Summary The structure of a 1.5-kb DNA sequence that is necessary and sufficient for the replication of an 8.2-kb cryptic plasmid, pFTB14, isolated from a strain of Bacillus amyloliquefaciens has been characterized. The 1.5-kb DNA sequence contains an open reading frame, rep, stretching for 1017 bp, a promoter region for rep expression, and a possible replication origin for the plasmid upstream of the promoter. The rep product is trans-active and essential for plasmid replication. The predicted rep protein is a basic protein, as are the RepC protein of pT181, RepB of pUB110 and protein A of pC194 (all these found in staphylococci) and the protein of the R6K plasmid of Escherichia coli. The predicted rep protein has highly homologous amino acid sequences with protein A of pC194 and RepC of pUB110 throughout the protein molecule, but not with RepC of pT181, of R6K or protein RepH encoded by and iniating the replication of pC194.  相似文献   

4.
Supercoiled plasmid DNA is the substrate for initiation of pUB110 replication, and - by inference - for binding of its initiator protein (RepU) to the plasmid replication origin (oriU) in vivo. No hairpin structure is required for RepU-oriU recognition. RepH (the pC194 replication initiation protein) failed to initiate replication in trans at oriU. The nucleotides that determine the specificity of the replication initiation process are located within oriU but termination is unefficient. Therefore the segment that forms the full recognition signal for termination is probably located 3' of the oriU recognition sequence. Two overlapping domains, one for initiation and one required for termination, compose the leading strand replication origin of plasmid pUB110.  相似文献   

5.
Replication origin of a single-stranded DNA plasmid pC194.   总被引:10,自引:4,他引:6       下载免费PDF全文
M F Gros  H te Riele    S D Ehrlich 《The EMBO journal》1989,8(9):2711-2716
The replication of the single-stranded (ss) DNA plasmid pC194 by the rolling circle mechanism was investigated using chimeric plasmids that possess two pC194 replication origins. One of the origins was intact, whereas the other was either intact or mutated. The origins were activated by inducing synthesis of the pC194 replication protein, under the control of lambda phage pL promoter. Initiation of pC194 replication at one origin and termination at the other generated circular ssDNA molecules smaller than the parental chimeric plasmid. From the nature and the amount of ssDNA circles, the activity of an origin could be assessed. Our results show that (i) the signal for initiation of pC194 replication is more stringent than that for termination; (ii) the sequence and structure of the origin are important for its activity and (iii) successful termination of one replication cycle is not followed by reinitiation of another. This last observation differentiates a ssDNA plasmid (pC194) from a ssDNA phage (phi X174).  相似文献   

6.
Are single-stranded circles intermediates in plasmid DNA replication?   总被引:38,自引:7,他引:31       下载免费PDF全文
Plasmid pC194 exists as circular double-stranded and single-stranded DNA in Bacillus subtilis and Staphylococcus aureus. We report here that the plasmid pHV33, composed of pBR322 and pC194, exists as double- and single-stranded DNA in Escherichia coli, provided that the replication functions of pC194 are intact. Single-stranded pHV33 DNA is converted to double-stranded DNA by complementary strand synthesis probably initiated at rriB, a primosome assembly site present on pBR322. The efficiency of complementary strand synthesis affects the double-stranded copy number, which suggests that single-stranded DNA is a plasmid replication intermediate.  相似文献   

7.
Rolling circle replication of single-stranded DNA plasmid pC194.   总被引:39,自引:5,他引:34       下载免费PDF全文
M F Gros  H te Riele    S D Ehrlich 《The EMBO journal》1987,6(12):3863-3869
A group of small Staphylococcus aureus/Bacillus subtilis plasmids was recently found to replicate via a circular single-stranded DNA intermediate (te Riele et al., 1986a). We show here that a 55 bp region of one such plasmid, pC194, has origin activity when complemented in trans by the plasmid replication protein. This region contains two palindromes, 5 and 14 bp long, and a site nicked by the replication protein. DNA synthesis presumably initiated at the nick in the replication origin can be terminated at an 18 bp sequence homologous to the site of initiation, deriving from another plasmid, pUB110, or synthesized in vitro. This result suggests that, similar to the Escherichia coli single-stranded DNA phages, pC194 replicates as a rolling circle. Interestingly, there is homology between replication origins and replication proteins of pC194 and the phage phi mX174.  相似文献   

8.
A Lactobacillus hilgardii plasmid, pLAB1000, was studied to understand the organization of autonomous replicons from lactobacilli. Two cassettes could be identified. First, the replication region consisted of a sequence coding for a replication protein (Rep) and its corresponding target site, similar to those from plasmids pUB110, pC194 (Staphylococcus aureus), pFTB14, pBAA1 (Bacillus sp.), and pLP1 (Lactobacillus sp.). Sequence analysis indicated the possible synthesis of an antisense RNA that might regulate Rep production. The results also suggested that pLAB1000 replicates via a single-stranded DNA intermediate, and a putative lagging-strand initiation site was found that had similarities to those of alpha 3, St-1, and G4 isometric bacteriophages. The second cassette of pLAB1000 consisted of a sequence coding for a putative mobilization protein (Mob) and its corresponding RSA site. This cassette was similar to those found in pT181, pUB110, pE194 (S. aureus), and pG12 (Bacillus sp.), and it was found to be conserved among different Lactobacillus plasmid replicons. The origin and evolution of these functional cassettes are also discussed.  相似文献   

9.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

10.
11.
Summary Plasmid pC194-1, a mutant of pC194, and chimeric derivatives of pC194-1 are segregationally unstable in B. subtilis. Such instability could be enhanced by exposure of pC194-1-carrying cells to methyl methanesulfonate. pC194-1 is distinct from pC194 in the addition of two A:T base pairs within the previously defined D region of pC194. Complementation experiments between pC194-1 and other plasmids suggest that the mutation of pC194-1 interferes with the production of a diffusible gene product required for plasmid maintenance.  相似文献   

12.
Linear multigenome-length double and single stranded plasmid DNA was identified in a Bacillus subtilis ATP-dependent DNAase mutant strain (addA5) bearing plasmids pC194 or pBD95ts. Plasmid pBC30, a seg mutant of pC194, as well as some pUB110 derivatives with rearrangements external to the minimal replicon, produce high amounts of such a concatemeric DNA, even in Rec+ cells. The synthesis of this type of plasmid DNA occurs in the absence of an active plasmid-encoded Rep protein and is markedly affected in polA5 and recE4 genetic backgrounds. To account for these observations, we propose that the AddAB complex serves to prevent a sigma-type replication of plasmid DNA.  相似文献   

13.
pUCL22 is the lactose protease plasmid of Lactococcus lactis ssp. lactis CNRZ270. The nucleotide sequence of its replication region Rep22 contains a non-transcribed region, the replication origin, followed by a gene encoding a putative 388-amino-acid protein named Rep22A. The promoter regions of the rep22A and pC194 cat genes share strong similarities and the pUCL22 replicon exerted trans or cis negative control on the pC194 cat gene expression in L. lactis. We suggest that Rep22A binds to its own promoter as well as to the pC194 cat promoter and thus is autoregulated. We show that pUCL22 replicates mainly by a bidirectional theta mechanism in L. lactis, and is representative of a widely distributed replicon family, members of which could be co-resident. We propose that compatibility between these closely related replicons results from minor replication protein modifications coupled with base changes in their respective binding sites, supporting the co-existence of numerous related replicons in lactococcal strains.  相似文献   

14.
Yin S  Hao Y  Zhai Z  Li R  Huang Y  Tian H  Luo Y 《FEMS microbiology letters》2008,285(2):183-187
A cryptic plasmid from Lactobacillus plantarum M4 isolated from fresh milk, designated as pM4, was sequenced and characterized. It was 3320 bp in length with a G+C content of 38.73 mol%. The plasmid pM4 was predicted to encode three putative ORFs, in which ORF1 shared 99% and 98% homology, respectively, with the Rep proteins of reported plasmids pWCFS101 and pF8801, members of the rolling circle replication (RCR) pC194 family. Sequence analysis revealed a typical pC194 family double strand origin (dso) and a putative single strand origin (sso) located upstream of the rep gene. Mung bean nuclease analysis and Southern hybridization confirmed the presence of single-stranded DNA (ssDNA) intermediates, suggesting that pM4 belongs to the RCR pC194 family. Accumulation of ssDNA in rifampicin-treated strains implied that the host-encoded RNA polymerase was involved in the conversion of ssDNA to double-stranded DNA. Furthermore, the relative copy number of pM4 was estimated to be about 25 in each cell by real-time PCR. The new RCR plasmid would be valuable in constructing cloning vectors for application in the food industry.  相似文献   

15.
Hybrids between plasmids pC194, pBR322 and the bacteriophage f1 undergo deletions in Escherichia coli. The deletions end most often between nucleotides 1445 and 1446 of pC194. That site probably corresponds to a nick in the replication origin of this plasmid. The localization of the other deletion end appears to be determined by the position of the f1 replication fork. Two models accounting for these data are discussed.  相似文献   

16.
Two full-length contiguous HpaI fragments of the 0 to 18.2% region of T7 H DNA (HpF-H and HpG) were inserted into plasmids pHV14 or pC194 using oligo(dG . dC) connectors or synthetic HindIII adaptors. Amplification of the two early T7 fragments was achieved by transforming lysostaphin-treated S. aureus W57 with the hybrid plasmids. Experimental evidence is presented suggesting that neither of these T7 segments can be cloned in an intact form in E. coli. One of the hybrids, pHV14-HpF-H, proved to be unstable even in B. subtilis 168. The supercoiled recombinant plasmids were tested for their capacity to support RNA synthesis by purified E. coli or T7 RNA polymerases and to serve as templates in a cell-free T7 DNA replication system. The results of these in vitro studies indicate the presence of active "early" promoters in the cloned fragment HpF-H and active "late" promoters, as well as a functional origin of replication in the cloned fragment HpG.  相似文献   

17.
Replication control genes of plasmid pE194.   总被引:28,自引:17,他引:11       下载免费PDF全文
  相似文献   

18.
Summary pT181 and pC221 are closely relatedStaphylococcus aureus plasmids with the same genome organization, which is characterized by the overlapping of the origin of replication with the sequence encoding a protein, Rep, essential for plasmid replication. Former results have shown the lack of in vivo cross-complementation between these two plasmids, while in vitro studies have revealed the ability of both Rep proteins to act on either origin. One possible explanation for this difference was based on a previous analysis of the incompatibility expressed by the origin of replication of these plasmids, showing that the origin embedded in therep gene competes for Rep utilization with the origin of a test plasmid and that changes in the sequence of the origin reduce its ability to compete. To avoid this problem, in the present work special hybrids were constructed in which the origin of replication overlapping therep gene was mutationally inactivated, without changing the amino acid sequence of the encoded protein. The level of Rep expression by these hybrids could be varied by taking advantage of what is presently known about the control of Rep synthesis in plasmid pT181. The results of complenentation studies conducted using these hybrids have shown that: (i) at the usual level of expression for a wild-type plasmid each Rep protein can initiate replication strictly from its corresponding origin; (ii) when overproduced, the pT181 RepC protein could also act efficiently on the pC221 origin; a functional pT181 origin present in the same host completely prevented this complementation; (iii) in excess, the RepD protein encoded by pC221 could replicate a plasmid carrying the pT181 origin but could not ensure the hereditary stability of such a plasmid in the absence of another active replication system; (iv) when overproduced both RepC and RepD could act on the origin of replication of three other related plasmids pS194, pC223 and pUB112.  相似文献   

19.
20.
The instability of reiterated sequences in the Bacillus subtilis chromosome that was previously reported (M. Young, J. Gen. Microbiol. 130:1613-1621, 1984) results from the presence of a truncated pC194 replication origin together with an intact replication protein A gene in the amplified DNA. Removal of the truncated pC194 replication origin or inactivation of replication protein A stabilizes reiterated sequences, whereas provision of replication protein A in trans destabilizes them. We suggest that residual activity of protein A at the truncated replication origin generates single-stranded DNA, which stimulates recombination between repeated sequences and thus destabilizes amplified structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号