首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

2.
Summary Human and rabbit masticatory muscles were analyzed immuno-and enzyme-histochemically using antibodies specific to cardiac , slow and fast myosin heavy chain isoforms. In human masseter, temporalis, and lateral pterygoid muscle cardiac myosin heavy chain is found in fibres that contain either fast, or fast and slow myosin heavy chain. In rabbit masseter, temporalis and digastric muscles, fibres are present that express cardiac myosin heavy chain either exclusively, or concomitantly with slow myosin heavy chain or fast myosin heavy chain. Our results demonstrate a much broader distribution of cardiac myosin heavy chain than hitherto recognized and these might explain in part the specific characteristics of masticatory muscles. The cardiac myosin heavy chain is only found in skeletal muscles originating from the cranial part of the embryo (including the heart muscle) suggesting that its expression might be determined by the developmental history of these muscles.  相似文献   

3.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

4.
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.  相似文献   

5.
Summary In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti- myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti- myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti- myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti- myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

6.
Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

7.
Summary Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

8.
Bigard, Xavier A., Chantal Janmot, Danièle Merino,Françoise Lienhard, Yannick C. Guezennec, and Anne D'Albis.Endurance training affects myosin heavy chain phenotype inregenerating fast-twitch muscle. J. Appl.Physiol. 81(6): 2658-2665, 1996.The aim of thisstudy was to analyze the effects of treadmill training (2 h/day, 5 days/wk, 30 m/min, 7% grade for 5 wk) on the expression of myosinheavy chain (MHC) isoforms during and after regeneration of afast-twitch white muscle [extensor digitorum longus (EDL)]. Male Wistar rats were randomly assigned to a sedentary(n = 10) or an endurance-trained (ET;n = 10) group. EDL muscle degeneration and regeneration were induced by two subcutaneous injections of a snaketoxin. Five days after induction of muscle injury, animals were trainedover a 5-wk period. It was verified that ~40 days after venomtreatment, central nuclei were present in the treated EDL muscles fromsedentary and ET rats. The changes in the expression of MHCs in EDLmuscles were detected by using a combination of biochemical andimmunocytochemical approaches. Compared with contralateral nondegenerated muscles, relative concentrations of types I, IIa, andIIx MHC isoforms in ET rats were greater in regenerated EDL muscles(146%, P < 0.05; 76%,P < 0.01; 87%,P < 0.01, respectively). Their elevation corresponded to a decreasein the relative concentration of type IIb MHC (36%,P < 0.01). Although type I accountedfor only 3.2% of total myosin in regenerated muscles from the ETgroup, the cytochemical analysis showed that the proportion of positive staining with the slow MHC antibody was markedly greater in regenerated muscles than in contralateral ones. Collectively, these results demonstrate that the regenerated EDL muscle is sensitive to endurance training and suggest that the training-induced shift in MHC isoforms observed in these muscles resulted from an additive effect of regeneration and repeated exercise.

  相似文献   

9.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

10.
Parvalbumin in mouse muscle in vivo and in vitro   总被引:1,自引:0,他引:1  
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.  相似文献   

11.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

12.
Summary The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end).In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different hisotchemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type (IIoes) had an acid- and alkaline-stable m-ATP-ase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and antiIIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins.These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the fast type, and contains a distinct isoform of myosin similr but not identical to the other fast type myosins.  相似文献   

13.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

14.
Summary A combined enzyme-histochemical (ATPase reactivity) and immunohistochemical study has been performed on sections of rabbit masseter muscle. The majority of the fibres previously designated as type IIC and/or type I according to their ATPase activity were found to contain cardiac -myosin heavy chain in addition to other myosin heavy chains. All -myosin heavy chain-containing fibres reveal ATPase activity after pre-incubation at pH 4.2–4.6 similar to that of the classical type I fibres, while in that pH range, limb type IIC fibres show intermediate ATPase activity. One group of these fibres reveal ATPase activity after pre-incubation at pH 10.1–10.3 as well, but not at pH 10.4–10.5. These fibres contain exclusively either - or - and I-myosin heavy chains but do not contain the IIA-myosin heavy chain. The second part of the fibres reveals ATPase activity after treatment within the whole alkaline pre-incubation range (pH 10.1–10.5) and these fibres contain -myosin and IIA-myosin but no, I-myosin heavy chain.It is concluded that the classical IIC fibre type is not present in the rabbit masseter muscle. Furthermore, ATPase reactivity does not allow us to distinguish fibres on their myosin heavy chain content in rabbit masseter muscle.  相似文献   

15.
Abstract. Organotypic nerve-muscle cultures were prepared from foetal mouse spinal cord and adult mouse muscle fibres. In this system, the adult fibres degenerate and new myotubes form. The regenerated muscle fibres become innervated, develop cross-striations, and survive for several months. We have investigated the isozymes of myosin present in these muscle fibres using histochemistry and immunocytochemistry with antibodies to rat embryonic, neonatal, and adult fast myosins. We demonstrate that some of the regenerated fibres contain adult fast but not embryonic or neonatal myosin. This is the first demonstration of the production of adult myosin heavy chain in tissue culture. This system therefore offers the possibility for further study of the development of adult myosin isoforms in vitro.  相似文献   

16.
Summary Electromyography has been used to study the recruitment of red, pink and white muscle fibres of the Mirror carp at different swimming speeds. Locomotion below 0.3–0.5 L/S (lengths per second) is achieved primarily by fin movements after which the red myotomal muscle becomes active. Pink muscle fibres are the next type to be recruited at speeds around 1.1–1.5 L/S. White muscle is only used for fast cruising in excess of 2–2.5 L/S and during bursts of acceleration.Studies of the myofibrillar ATPase activities of these muscles have shown a ratio of 124 for the red, pink and white fibres respectively. The myosin low molecular weight components, which are characteristic of the myosin phenotype, have been investigated by SDS polyacrylamide electrophoresis. The light chain patterns of the pink and white muscles were identical and characteristic of the fast myosin phenotype. Red muscle myosin had a light chain pattern characteristic of slow muscles. It would appear that there is a relationship between the speed of contraction of the fibre types and the locomotory speed at which they are recruited.The activities of some enzymes of energy metabolism have also been determined in the three muscle types. Enzymes associated with oxidate metabolism have high, intermediate and low activities in the red, pink and white muscles respectively. Pyruvate kinase and lactate dehydrogenase activities were considerably higher in the pink than in either red or white muscles. It is suggested that the high capacity for anaerobic glycolysis of the pink muscle is associated with its recruitment for sustained effort at swimming speeds above which the fish can no longer meet all its energy requirements by gas exchange at the gills.Abbreviations used EDTA ethylenediamine tetraacetic acid - L/S lengths, sec–1 - LDH Lactate dehydrogenase - PFK phosphofructokinase - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

17.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.  相似文献   

18.
Direct genetransfer into skeletal muscle in vivo presents a convenientexperimental approach for studies of adult muscle gene regulatorymechanisms, including fast vs. slow fiber type specificity. Previous studies have reported preferentialexpression of fast myosin heavy chain and slow myosin light chain andtroponin I (TnIslow) gene constructs in muscles enriched in theappropriate fiber type. We now report a troponin I fast (TnIfast)direct gene transfer study. We injected into the mouse soleus muscleplasmid DNA or recombinant adenovirus carrying a TnIfast/-galactosidase (-gal) reporter construct that had previously beenshown to be expressed specifically in fast fibers in transgenic mice.Surprisingly, microscopic histochemical analysis 1 and 4 wkpostinjection showed similar TnIfast/-gal expression in fast andslow fibers. A low but significant level of muscle fiber segmentalregeneration was evident in muscles 1 wk postinjection, andTnIfast/-gal expression was preferentially targeted to regeneratingfiber segments. This finding can explain why TnIfast constructs arederegulated with regard to fiber type specificity, whereas the myosinconstructs previously studied are not. The involvement of regeneratingfiber segments in transduction by plasmid DNA and recombinantadenoviruses injected into intact normal adult muscle is anunanticipated factor that should be taken into account in the planningand interpretation of direct gene transfer experiments.

  相似文献   

19.
Organotypic nerve-muscle cultures were prepared from foetal mouse spinal cord and adult mouse muscle fibres. In this system, the adult fibres degenerate and new myotubes form. The regenerated muscle fibres become innervated, develop cross-striations, and survive for several months. We have investigated the isozymes of myosin present in these muscle fibres using histochemistry and immunocytochemistry with antibodies to rat embryonic, neonatal, and adult fast myosins. We demonstrate that some of the regenerated fibres contain adult fast but not embryonic or neonatal myosin. This is the first demonstration of the production of adult myosin heavy chain in tissue culture. This system therefore offers the possibility for further study of the development of adult myosin isoforms in vitro.  相似文献   

20.
Summary Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later.In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The present experiments provide a direct proof of utilization of donor satellite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号