首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Small interfering RNAs (siRNAs) can induce potent gene silencing by degradation of cognate mRNA. However, in dividing cells, the silencing lasts only 3 to 7 days, presumably because of siRNA dilution with cell division. Here, we investigated if sustained siRNA-mediated silencing of human immunodeficiency virus type 1 (HIV-1) is possible in terminally differentiated macrophages, which constitute an important reservoir of HIV in vivo. CCR5, the major HIV-1 coreceptor in macrophages, and the viral structural gene for p24 were targeted either singly or in combination. When transfected 2 days prior to infection, both CCR5 and p24 siRNAs effectively reduced HIV-1 infection for the entire 15-day period of observation, and combined targeting of both genes abolished infection. To investigate whether exogenously introduced siRNA is maintained stably in macrophages, we tested the kinetics of siRNA-mediated viral inhibition by initiating infections at various times (2 to 15 days) after transfection with CCR5 and p24 siRNAs. HIV suppression mediated by viral p24 siRNA progressively decreased and was lost by day 7 posttransfection. In contrast, viral inhibition by cellular CCR5 knockdown was sustained even when transfection preceded infection by 15 days, suggesting that the continued presence of target RNA may be needed for persistence of siRNA. The longer sustenance of CCR5 relative to p24 siRNA in uninfected macrophages was also confirmed by detection of internalized siRNA by modified Northern blot analysis. We also tested the potential of p24 siRNA to stably silence HIV in the setting of an established infection where the viral target gene is actively transcribed. Under these circumstances, long-term suppression of HIV replication could be achieved with p24 siRNA. Thus, siRNAs can induce potent and long-lasting HIV inhibition in nondividing cells such as macrophages.  相似文献   

2.
Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle.  相似文献   

3.
Murine primary cells are poorly permissive to human immunodeficiency virus type 1 (HIV-1) vector infection. Retroviral infectivity is influenced by dominant inhibitors such as TRIM5alpha. Sensitivity to TRIM5alpha is altered by interactions between cyclophilin A and the HIV-1 capsid. Here we demonstrate that competitive inhibitors of cyclophilins, cyclosporine or the related Debio-025, stimulate HIV-1 vector transduction of primary murine cells, including bone marrow and macrophages, up to 20-fold. Unexpectedly, the infectivity of an HIV-1 mutant or a simian lentivirus that does not recruit cyclophilin A is also stimulated by these drugs. We propose that cyclosporine and related compounds will be useful tools for experimental infection of murine primary cells. It is possible that HIV-1 infection of murine cells is inhibited by dominant factors related to immunophilins.  相似文献   

4.
5.
6.
We have previously shown that the aptamer, UCLA1, is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs) by binding to residues in gp120. In this study we examined whether UCLA1 was effective against HIV-1 subtype C isolates in monocyte-derived macrophages (MDMs). Of 4 macrophage-tropic isolates tested, 3 were inhibited by UCLA1 in the low nanomolar range (IC80<29 nM). One isolate that showed reduced susceptibility (<50 nM) to UCLA1 contained mutations in the α5 helix next to the CD4 and co-receptor (CoR) binding complex. To further evaluate aptamer resistance, two primary viruses were subjected to increasing concentrations of UCLA1 over a period of 84 days in PBMCs. One isolate showed a 7-fold increase in IC80 (351 nM) associated with genetic changes, some of which were previously implicated in resistance. This included F223Y in the C2 region and P369L within the CD4 and CoR binding complex. A second isolate showed a 3-fold increase in IC80 (118 nM) but failed to show any genetic changes. Collectively, these data show that UCLA1 can efficiently block HIV-1 infection in MDMs and PBMCs with escape mutations arising in some isolates after prolonged exposure to the aptamer. This supports the further development of the UCLA1 aptamer as a HIV-1 entry inhibitor.  相似文献   

7.
8.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.  相似文献   

9.
10.
Virus life cycles depend on cellular factors. Therefore, targeting cellular in combination with viral enzymes could be an effective control in virus replication. In contrast to viral proteins, cellular proteins are not prone to mutations; therefore, viral escape is not expected from drugs inhibiting cellular factors. Hydroxyurea inhibits the cellular enzyme ribonucleotide reductase, thus reducing DNA synthesis. Furthermore, this drug potentiates the activity of nucleoside analogues, inhibits the escape of A-analogue resistant mutants, and increases the phosphorylation of T-analogues. Besides its antiviral activity, hydroxyurea effects the immune system by decreasing immune activation, inhibiting the expansion of CD8 cells and the depletion of CD4 cells. Hydroxyurea has been used in medicine for 40 years, is well tolerated, and it is the least expensive available anti-HIV-1 drug. These characteristics make hydroxyurea a primary candidate for use in combination therapies for the treatment of HIV-1 infection.  相似文献   

11.
12.
13.
14.
Increased kynurenine pathway metabolism has been implicated in the etiology of AIDS dementia complex (ADC). The rate-limiting enzyme for this pathway is indolamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of human immunodeficiency virus type 1 (HIV1-BaL, HIV1-JRFL, and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain-derived HIV-1 isolates, laboratory-adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the highly replicating macrophage-tropic LA strain HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day 8 postinfection. Abundant HIV-1 replication did not reduce the ability of exogenous gamma interferon (IFN-gamma) to induce IDO and kynurenine synthesis in HIV-infected MDM. The addition of anti-IFN-gamma antibody to MDM infected with HIV1-JRFL resulted in an absence of detectable IDO protein after 48 h and a decrease of 64% +/- 1% in supernatant kynurenine concentration. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent kynurenine metabolism in MDM. The induction of IDO, while apparently independent of replication capacity, appears to be mediated by a transient production of IFN-gamma in MDM responding to the initial infection with selected strains of HIV-1.  相似文献   

15.
In an in vitro assay employing reconstituted nuclei, importin 7 (IPO7) has been implicated in nuclear translocation of human immunodeficiency virus type 1 (HIV-1) cDNA. Using RNA interference technology, we inhibited expression of IPO7 by 80 to 95% in primary macrophages and in HeLa cells and monitored their ability to support HIV-1 and simian immunodeficiency virus (SIV) cDNA synthesis, nuclear translocation, and infection efficiency. Marked IPO7 deficiency did not alter the rate or extent of HIV-1 or SIV cDNA synthesis or nuclear translocation. The infection efficiency of HIV-1 was similarly unaltered. Therefore, in natural, nondividing targets of HIV-1, IPO7 may be dispensable for infection.  相似文献   

16.
We report the generation of retroviral vectors based on Moloney murine leukemia virus that specifically transduce cells infected with T-cell-tropic human immunodeficiency virus type 1 (HIV-1). This vector was pseudotyped with T-cell-tropic HIV-1 receptors CD4 and CXCR4. We demonstrate that transduction is contingent upon HIV-1 gp120 and gp41 expression.  相似文献   

17.
Y Wu  L Duan  M Zhu  B Hu  S Kubota  O Bagasra    R J Pomerantz 《Journal of virology》1996,70(5):3290-3297
Intracellular immunization to target the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev has been explored as a genetic therapy for AIDS. Efficient intracellular expression of rearranged immunoglobulin heavy and light chain variable regions of anti-Rev monoclonal antibodies, with various vectors, and subsequent inhibition of HIV-1 replication have been previously reported by our laboratories. To further understand the molecular mechanisms and effects that intracellular anti-Rev single chain variable fragments (SFvs) have against HIV-1, via blocking of Rev function, two anti-Rev SFvs which specifically bind to differing epitopes of the Rev protein have been cloned. One SFv binds to the Rev activation domain, and the second SFv binds to the distal C terminus of Rev in the nonactivation region. Further studies now demonstrate that both anti-Rev SFvs lead to variable resistance to HIV-1 infection. Although binding affinity assays demonstrated that the SFv which specifically recognizes the Rev activation domain (D8) had an extracellular binding affinity significantly lower than that of the SFv specific to the nonactivation region (D1O), the SFv D8 demonstrated more potent activity in inhibiting virus production in human T-cell lines and peripheral blood mononuclear cells than did SFv D10. Thus, extracellular binding affinities of an SFv for a target viral protein cannot be used to directly predict its activity as an intracellular immunization moiety. These data demonstrate potential approaches for intracellular immunization against HIV-1 infection, by efficiently blocking specific motifs of Rev to after the function of this retroviral regulatory protein. These studies extend the understanding of the effects, on a molecular level, of SFvs binding to critical epitopes of Rev and further suggest that rational design of SFvs, with interactions involving specific viral moieties which mediate HIV-1 expression, may hold promise for the clinical application of genetic therapies to combat AIDS.  相似文献   

18.
Kong W  Tian C  Liu B  Yu XF 《Journal of virology》2002,76(22):11434-11439
Efficient expression of the human immunodeficiency virus type 1 (HIV-1) structural gene products Gag, Pol, and Env involves the regulation by viral Rev and Rev-responsive elements (RRE). Removal of multiple inhibitory sequences (INS) in the coding regions of these structural genes or modification of the codon usage patterns of HIV-1 genes to those used by highly expressed human genes has been found to significantly increase HIV-1 structural protein expression in the absence of Rev and RRE. In this study, we show that efficient and stable expression of the HIV-1 structural gene products Gag and Env could be achieved by transfection with a noncytopathic Sindbis virus expression vector by using HIV-1 sequences from primary isolates without any sequence modification. Stable expression of these Gag and Env proteins was observed for more than 12 months. The fact that the Sindbis virus expression vector replicates its RNA only in the cytoplasm of the transfected cells and the fact that the lack of expression of HIV-1 Gag by the DNA vector containing unmodified HIV-1 gag sequences was associated with a lack of detectable cytoplasmic gag RNA suggest that a major blockage in the expression of HIV-1 structural proteins in the absence of Rev/RRE is caused by inefficient accumulation of mRNA in the cytoplasm. Efficient long-term expression of structural proteins of diverse HIV-1 strains by the noncytopathic Sindbis virus expression system may be a useful tool for functional study of HIV-1 gene products and vaccine research.  相似文献   

19.
CCR5 serves as a requisite fusion coreceptor for clinically relevant strains of human immunodeficiency virus type 1 (HIV-1) and provides a promising target for antiviral therapy. However, no study to date has examined whether monoclonal antibodies, small molecules, or other nonchemokine agents possess broad-spectrum activity against the major genetic subtypes of HIV-1. PRO 140 (PA14) is an anti-CCR5 monoclonal antibody that potently inhibits HIV-1 entry at concentrations that do not affect CCR5's chemokine receptor activity. In this study, PRO 140 was tested against a panel of primary HIV-1 isolates selected for their genotypic and geographic diversity. In quantitative assays of viral infectivity, PRO 140 was compared with RANTES, a natural CCR5 ligand that can inhibit HIV-1 entry by receptor downregulation as well as receptor blockade. Despite their divergent mechanisms of action and binding epitopes on CCR5, low nanomolar concentrations of both PRO 140 and RANTES inhibited infection of primary peripheral blood mononuclear cells (PBMC) by all CCR5-using (R5) viruses tested. This is consistent with there being a highly restricted pattern of CCR5 usage by R5 viruses. In addition, a panel of 25 subtype C South African R5 viruses were broadly inhibited by PRO 140, RANTES, and TAK-779, although approximately 30-fold-higher concentrations of the last compound were required. Interestingly, significant inhibition of a dualtropic subtype C virus was also observed. Whereas PRO 140 potently inhibited HIV-1 replication in both PBMC and primary macrophages, RANTES exhibited limited antiviral activity in macrophage cultures. Thus CCR5-targeting agents such as PRO 140 can demonstrate potent and genetic-subtype-independent anti-HIV-1 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号