首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of two temperature-sensitive (ts) mutant groups of influenza A/WSN virus defective in complementary RNA synthesis were analyzed with respect to the identity of their defective genes. RNA analysis of recombinants having a ts+ phenotype derived from the mutants and HK virus permitted the identification of RNA 1 and RNA 2 as the single defective gene in mutant groups I and III, respectively. Based on knowledge obtained by mapping the WSN virus genome, it then was possible to determine that biologically functional P3 protein (coded for by RNA 1) and P1 protein (RNA 2) are required for complementary RNA synthesis of influenza virus.  相似文献   

2.
3.
4.
5.
6.
  相似文献   

7.
8.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

9.
In order to establish cell lines which complement the growth of temperature-sensitive (ts) mutants of influenza virus, three RNA polymerase and nucleoprotein (NP) genes each linked to the mouse mammary tumor virus LTR were cloned into the bovine papillomavirus vector DNA. After co-transfection of mouse C127 cells with these recombinant plasmids, a cell line, clone 76, in which the expression of the three polymerase and NP genes could be stimulated by dexamethasone, was established. The clone 76 cells could complement the growth of ts-mutants defective in one of the polymerase subunit genes at the nonpermissive temperature in response to dexamethasone. The results suggest that the simultaneous expression of the three polymerase genes in the same compartment of protein synthesis machinery is required for an efficient complementation of ts-mutant growth.  相似文献   

10.
Twenty-six temperature-sensitive (ts) mutants of United Kingdom tissue culture-adapted bovine rotavirus were isolated and characterized. Fourteen of these mutants were determined to be ts both by efficiency of plating and by virus yield at the nonpermissive temperature of 39.5 degrees C as compared with that at the permissive temperature of 32 degrees C. The remaining mutants were only ts by the criterion of efficiency of plating. High-frequency recombination (gene reassortment) was observed when some pairs of mutants were crossed, and this allowed the classification of the mutants into five separate recombination groups. Groups III and V have prototype ts mutants (ts34 and ts115, respectively) that do not synthesize RNA or polypeptides at 39.5 degrees C. The other groups, I, II, and IV, have prototype mutants (ts17, ts7, and ts6, respectively) that synthesize both RNA and polypeptides at 39.5 degrees C, although ts17 does so only at a reduced level.  相似文献   

11.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

12.
Specific single stranded DNA probes have been obtained for both influenza virion RNA (vRNA) and complementary RNA (cRNA) by cloning a hemagglutinin gene fragment in the single stranded DNA phase M13. These probes were used for hybridization with the total labeled RNA from cytoplasmic extracts of infected cells. MDCK cells were infected with temperature-sensitive mutants of influenza HK/68 and the production of the virus specific RNA species was analysed at both permissive and restrictive temperatures. Results show that two NP mutants which undergo intracistronic complementation exhibit two different phenotypes at the non permissive temperature: ts2C is poly A cRNA and vRNA negative whereas ts463 is RNA positive. Two mutants of P genes were also analysed and we discuss the relationship existing between the synthesis of the three RNA species especially between poly A and non poly A cRNA.  相似文献   

13.
14.
15.
16.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

17.
18.
The hepadnavirus P gene contains amino acid sequences which share homology with all known RNases H. In this study, we made four mutants in which single amino acids of the duck hepatitis B virus (DHBV) RNase H region were altered. In two of them, amino acids at locations comprising the putative catalytic site were changed, while the remaining mutants had alterations at amino acids conserved among hepadnaviruses. Transfection of these mutant genomes into permissive cells resulted in synthesis of several discrete viral nucleic acid species, ranging in apparent sizes from approximately 500 to 3,000 bp, numbered I, II, III, IV, and V. While the locations of the species were similar in all mutants, the proportions of the species varied among the mutants. Analysis of the nucleic acid species revealed that they were hybrid molecules of RNA and minus-strand DNA, indicating that the RNase H activity was missing or greatly reduced in these mutants. Primer extension experiments showed that the mutant viruses initiated minus-strand viral DNA synthesis normally. The 3' termini of minus-strand DNA in species II, III, and IV were mapped just downstream of nucleotides 1659, 1220, and 721, respectively. Species V contained essentially full-length minus-strand viral DNA. A parallel amino acid change in the putative catalytic site of the HBV RNase H domain resulted in accumulation of low-molecular-weight hybrid molecules consisting of RNA and minus-strand DNA and similar in size and pattern to those seen with DHBV. These studies demonstrate experimentally the involvement of the C-terminal portion of the P gene in RNase H activity in both DHBV and human hepatitis B virus and indicate that the amino acids essential for RNase H activity of hepadnavirus P protein are also important for the efficient elongation of minus-strand viral DNA.  相似文献   

19.
Temperature-sensitive (ts) mutants of Newcastle disease virus have been isolated and characterized genetically (complementation), biochemically (RNA synthesis) and biologically (fusion from within and hemadsorption). Fifteen of these mutants have been divided into five complementation groups. Groups A (five mutants) and E (one mutant) are ts for RNA synthesis (RNA-) as well as for the other functions. Group B contains four RNA+ mutants of which one is ts for fusion, one for hemadsorption and two for neither function. Group C contains one RNA+ mutant which is a poor cell fuser. Group D contains two RNA+ mutants which are ts for fusion. In addition, two noncomplementing mutants (group BC) fail to complement both group B and group C mutants while exhibiting complementation with mutants in groups A, D, and E.  相似文献   

20.
To perform a genetic analysis of the influenza A virus NS1 gene, a library of NS1 mutants was generated by PCR-mediated mutagenesis. A collection of mutant ribonucleic proteins containing the nonstructural genes was generated from the library that were rescued for an infectious virus mutant library by a novel RNP competition virus rescue procedure. Several temperature-sensitive (ts) mutant viruses were obtained by screening of the mutant library, and the sequences of their NS1 genes were determined. Most of the mutations identified led to amino acid exchanges and concentrated in the N-terminal region of the protein, but some of them occurred in the C-terminal region. Mutant 11C contained three mutations that led to amino acid exchanges, V18A, R44K, and S195P, all of which were required for the ts phenotype, and was characterized further. Several steps in the infection were slightly altered: (i) M1, M2, NS1, and neuraminidase (NA) accumulations were reduced and (ii) NS1 protein was retained in the nucleus in a temperature-independent manner, but these modifications could not justify the strong virus titer reduction at restrictive temperature. The most dramatic phenotype was the almost complete absence of virus particles in the culture medium, in spite of normal accumulation and nucleocytoplasmic export of virus RNPs. The function affected in the 11C mutant was required late in the infection, as documented by shift-up and shift-down experiments. The defect in virion production was not due to reduced NA expression, as virus yield could not be rescued by exogenous neuraminidase treatment. All together, the analysis of 11C mutant phenotype may indicate a role for NS1 protein in a late event in virus morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号