共查询到7条相似文献,搜索用时 0 毫秒
1.
Mikhail V. Pugachev Nikita V. Shtyrlin Lubov P. Sysoeva Elena V. Nikitina Timur I. Abdullin Alfiya G. Iksanova Alina A. Ilaeva Rashid Z. Musin Eugeny A. Berdnikov Yurii G. Shtyrlin 《Bioorganic & medicinal chemistry》2013,21(14):4388-4395
A series of 13 phosphonium salts on the basis of pyridoxine derivatives were synthesized and their antibacterial activity against clinically relevant strains was tested in vitro. All compounds were almost inactive against gram-negative bacteria and exhibited structure-dependent activity against gram-positive bacteria. A crucial role of ketal protection group in phosphonium salts for their antibacterial properties was demonstrated. Among synthesized compounds 5,6-bis[triphenylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (compound 20) was found to be the most effective towards Staphylococcus aureus and Staphylococcus epidermidis strains (MIC 5 μg/ml). The mechanism of antibacterial activity of this compound probably involves cell penetration and interaction with genomic and plasmid DNA. 相似文献
2.
Mikhail V. Pugachev Nikita V. Shtyrlin Sergey V. Sapozhnikov Lubov P. Sysoeva Alfiya G. Iksanova Elena V. Nikitina Rashid Z. Musin Olga A. Lodochnikova Eugeny A. Berdnikov Yurii G. Shtyrlin 《Bioorganic & medicinal chemistry》2013,21(23):7330-7342
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin. 相似文献
3.
《Bioorganic & medicinal chemistry letters》2014,24(4):1104-1107
A series of novel salts made of nicotine alkaloids and bile acids were synthesized and their haemolytic activity was examined in vitro using human erythrocytes. All compounds were characterized by spectroscopic methods. The novel salts show membrane-perturbing properties inducing the erythrocyte shape alterations and haemolysis in dose-dependent manner. Nicotine decreases the membrane interacting potential of bile acids in the novel compounds. The presence of sulfur or selenium atom in the nicotine molecule affects the haemolytic activity of its novel salts depending on the hydrophobicity of bile acids. 相似文献
4.
Six amino acid derived N-glycoconjugates of d-glucose were synthesized, characterized and tested for antibacterial activity against G(+)ve (Bacillus cereus) as well as G(−)ve (Escherichia coli and Klebsiella pneumoniae) bacterial strains. All the tested compounds exhibited moderate to good antibacterial activity against these bacterial strains. The results were compared with the antibacterial activity of standard drug Chloramphenicol, where results of A5 (Tryptophan derived glycoconjugates) against E. coli and A4 (Isoleucine derived glycoconjugates) against K. pneumoniae bacterial strains are comparable with the standard drug molecule. In silico docking studies were also performed in order to understand the mode of action and binding interactions of these molecules. The docking studies revealed that, occupation of compound A5 at the ATP binding site of subunit GyrB (DNA gyrase, PDB ID: 3TTZ) via hydrophobic and hydrogen bonding interactions may be the reason for its significant in vitro antibacterial activity. 相似文献
5.
Treatment of nosocomial and community acquired Staphylococcus aureus infections has become more challenging due to the egression of multi-drug resistance. This has spurred the need for rapid development of new therapeutic agents which can effectively negate the resistance mechanisms. In our current work, several new 4-oxoquinazolin-3(4H)-yl)benzoic acid and benzamide derivatives were synthesized and examined for their antimicrobial activity against ESKAP pathogen panel and pathogenic mycobacteria. In the primary screening, compounds 4a, 4b, 6′a, 6′b, 6′h, 6′i and 6′j were found to demonstrate selective and potent inhibitory activity against Staphylococcus aureus (MICs = 0.25–0.5 µg/mL). When tested against Vero cells, all the compounds were found to be non toxic possessing favourable selectivity index (SI > 10), which encouraged us for carrying out further studies. Compound 6′a (SI > 40) was tested against a number of multiple clinical strains of multi-drug resistant S. aureus and was found to exhibit potent activity, irrespective of the resistant status of the strain. Besides, compound 6′a also exhibited concentration dependent bactericidal activity and synergized with the FDA approved drugs tested. The interesting results obtained suggest the potential utility of the newly synthesized compounds for treatment of multidrug resistant S. aureus infections. 相似文献
6.
《Bioorganic & medicinal chemistry letters》2020,30(10):127107
The steady rise of the antimicrobial resistance is a major global threat to human health that requires the urgent need for novel antibiotics. In this work we report the synthesis of a small library of 3-subsituted-5-arylidene tetramic acids in order to investigate the scope of our previously established methodology via an intermediate oxazolone and their antimicrobial activity. From this series of 14 tetramic acids, 11 derivatives are novel and one of them is a Schiff base, which was structurally characterized with single-crystal X-ray analysis and NMR spectroscopy. The compounds incorporating a lipophilic acyl group at carbon-3 of the ring showed moderate to high activity with minimum inhibitory activity of 4–32 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA), accompanied by no human cell toxicity and hemolytic activity within the tested concentration range. The substituent at para position of the aryl ring seemed to have no or little effect on the antimicrobial activity of these compounds. 相似文献
7.
N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by 1H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba2+ and Ca2+) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na+ slightly reduced the antibacterial activity of both chitosan and its derivatives. 相似文献