首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L d-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L d-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L d-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.  相似文献   

2.
The 2,3-butanediol (2,3-BD) dehydrogenase gene (bdhA) of Bacillus licheniformis BL1 was disrupted to construct the tetramethylpyrazine (TMP)-producing BLA strain. During microaerobic fermentation, the bdhA-disrupted BLA strain produced 46.98 g TMP/l, and this yield was 23.99 % higher than that produced by the parent BL1 strain. In addition, the yield of acetoin, which is a TMP precursor, also increased by 28.98 % in BLA. The TMP production by BL1 was enhanced by supplementing the fermentation medium with 2,3-BD. The yield of TMP improved from 37.89 to 44.77 g/l as the concentration of 2,3-BD increased from 0 to 2 g/l. The maximum TMP and acetoin yields increased by 18.16 and 17.87 %, respectively with the increase in 2,3-BD concentration from 0 to 2 g/l. However, no increase was observed when the concentration of 2,3-BD in the matrix was ≥3 g/l. This study provides a valuable strategy to enhance TMP and acetoin productivity of mutagenic strains by gene manipulation and optimizing fermentation conditions.  相似文献   

3.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   

4.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

5.
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.  相似文献   

6.
Bacillus licheniformis was grown for 48 h at 37°C in solid state fermentation; a maximum of 1.7 × 1011 spores/g dry substrate were obtained using rice straw powder (300 g/kg) and wheat bran (700 g/kg) supplemented with glucose (40 g/kg), peptone (20 g/kg), yeast extract (20 g/kg), KH2PO4 (10 g/kg) and CaO (5 g/kg) with an initial moisture content of 65%.  相似文献   

7.
The effects of culture conditions on 2,3-butanediol (2,3-BD) production and its possible scale-up have been studied. A newly isolated Bacillus amyloliquefaciens B10-127, belonged to GRAS microorganisms and showed a remarkable 2,3-BD producing potency, was used for this experiment. Corn steep liquor, soybean meal and ammonium citrate were found to be the key factors in the fermentation according to the results obtained from the Plackett–Burman experimental design. The optimal concentration range of the three factors was examined by the steepest ascent path, and their optimal concentration were further optimized via response surface methodological approach and determined to be 31.9, 22.0 and 5.58 g/l, respectively. The concentration of the obtained 2,3-BD increased significantly with optimized medium (62.7 g/l) when compared with unoptimized medium (45.7 g/l) and the 2,3-BD productivity was about 2.4-fold (The fermentation time was shorten from 72 to 42 h). To observe scale-up effects, batch fermentation was carried out at various working volumes. At a working volume of 20.0 l, the final 2,3-BD concentration and yield were 61.4 and 0.38 g/g at 36 h with a 2,3-BD productivity of 1.71 g/l h. This result shows similar amount of 2,3-BD obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.  相似文献   

8.
Heterologous expression is an efficient strategy for target protein production. Dlt operon plays the important role in the d-alanylation of lipoteichoic acid, which might affect the net negative charge of cell wall for protein secretion. In this study, dlt operon was deleted to improve the target protein production, and nattokinase, α-amylase and β-mannanase with different isoelectric points (PIs) were served as the target proteins. Firstly, our results implied that deletions of dltA, dltB, dltC and dltD improved the net negative charge of cell wall for extracellular protein secretion respectively, and among which, the dltB deficient strain DW2ΔdltB showed the best performance, its nattokinase (PI: 8.60) activity was increased by 27.50% compared with that of DW2/pP43SacCNK. Then, the dltABCD mutant strain was constructed, and the net negative charge and nattokinase activity were increased by 55.57% and 37.13% respectively, due to the deficiency of dltABCD. Moreover, it was confirmed that the activities of α-amylase (PI: 6.26) and β-mannanase (PI: 5.75) were enhanced by 44.53% and 53.06% in the dltABCD deficient strains, respectively. Collectively, this study provided a strategy that deletion of dlt operon improves the protein secretion in B. licheniformis, and which strategy was more conducive to the target protein with lower PI.  相似文献   

9.
Enzymatic reduction of acetoin into 2,3-butanediol (2,3-BD) typically requires the reduced nicotinamide adenine dinucleotide (NADH) or its phosphate form (NADPH) as electron donor. Efficiency of 2,3-BD biosynthesis, therefore, is heavily influenced by the enzyme specificity and the cofactor availability which varies dynamically. This work describes the engineering of cofactor flexibility for 2,3-BD production by simultaneous overexpression of an NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (KpBudC) and an NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (CbAdh). Co-expression of KpBudC and CbAdh not only enabled condition versatility for 2,3-BD synthesis via flexible utilization of cofactors, but also improved production stereo-specificity of 2,3-BD without accumulation of acetoin. With optimization of medium and fermentation condition, the co-expression strain produced 92 g/L of 2,3-BD in 56 h with 90% stereo-purity for (R,R)-isoform and 85% of maximum theoretical yield. Incorporating cofactor flexibility into the design principle should benefit production of bio-based chemical involving redox reactions.  相似文献   

10.
A novel simple solid state fermentation method, netting bag bioreactor (Φ 120 × 800 mm), was developed and used to cultivate Bacillus licheniformis as probiotics. High spore yield (1.2 × 1011 CFU/g dry substrate) has been obtained by using this method. Comparing to the tray bioreactor and the packed bed bioreactor for Bacillus fermentation, the netting bag method was more cost-effective, time- and space-saving and the material cost is also as low as ca. US $293 per 1,000 kg spores. Thus, netting bag SSF can be widely applied to produce probiotic bacteria in developing areas.  相似文献   

11.
The microbial production of high amounts of 2,3-butanediol (2,3-BD) from glycerol as a sole carbon source by the Bulgarian isolate Klebsiella pneumoniae G31 was studied in a series of fed-batch processes. The following conditions were evaluated as optimal: micro-aerobic cultivation in modified media, without pH control. Beginning at pH 8, 49.2 g/l of 2,3-BD was produced as negligible concentrations of by-products were received. The pH is the most important factor ruling the 2,3-BD production. Spontaneous pH changes and products formation in time were investigated, performing fermentations with non-controlled pH starting at different initial pH. In lack of external maintenance, the microorganism attempted to control the pH using acetate/2,3-BD alternations of the oxidative pathway of glycerol catabolism, which resulted in pH fluctuations. Thus, the culture secreted 2,3-BD at unequal portions, either allowing or detaining the acetate synthesis. More alkaline initial pH led to enhanced 2,3-BD accumulation as a response to the increased amplitudes of the pH variations. When the pH was maintained constant, the yield of 2,3-BD was very poor. These cultures remained viable only 72 h; whereas, the pH self-controlling cells lived and produced 2,3-BD up to 280 h. In conclusion, the formation of 2,3-BD is a result of an adaptive mechanism of pH self-control, responding to spontaneous pH drops during glycerol fermentation.  相似文献   

12.
2,3-Butanediol is one of the promising bulk chemicals with wide applications. Its fermentative production has attracted great interest due to the high end concentration. However, large-scale production of 2,3-butanediol requires low-cost substrate and efficient fermentation process. In the present study, 2,3-butanediol production by Klebsiella pneumoniae from Jerusalem artichoke tubers was successfully performed, and various technologies, including separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), were investigated. The concentration of target products reached 81.59 and 91.63 g/l, respectively after 40 h in batch and fed-batch SSF processes. Comparing with fed-batch SHF, the fed-batch SSF provided 30.3% higher concentration and 83.2% higher productivity of target products. The results showed that Jerusalem artichoke tuber is a favorable substrate for 2,3-butanediol production, and the application of fed-batch SSF for its conversion can result in a more cost-effective process.  相似文献   

13.
14.
A newly isolated Bacillus megaterium with epoxide hydrolase activity resolved racemic glycidyl (o, m, p)-methylphenyl ethers to give enantiopure epoxides in 84–99% enantiomeric excess and with 21–73 enantiomeric ratios. The (S)-enantiomer was obtained from rac-glycidyl (o or m)-methylphenyl ether while the (R)-epoxides was obtained from glycidyl p-methylphenyl ether. The observations are explained at the level by enzyme-substrate docking studies.  相似文献   

15.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

16.
A pair of bifunctional expression vectors, pBL-WZX and pHY-WZX, for Escherichia coli and Bacillus licheniformis was constructed to express interesting genes in a secretory manner. The vectors contain an expression cassette consisted of the promoter and signal peptide region of B. licheniformis amyL as well as an artificial multiple cloning site and a terminator and utilize kanamycin-resistance and/or tetracycline-resistance for selection in both B. licheniformis and E. coli. Both vectors contain a part of 3′ terminal fragment of B. licheniformis amyL. The 5′-terminal or 3′-terminal fragment of B. licheniformis amyL can cause the integration and amplification of expression cassette in the chromosome of B. licheniformis under a kanamycin-selection pressure. pBL-WZX is an integrational vector while pHY-WZX is free one for B. licheniformis. Both vectors were succeeded in secretory expression of manL in both B. licheniformis and E. coli.  相似文献   

17.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

18.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

19.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

20.
From a Bacillus licheniformis wild type as well as a defined asporogenous derivative, stable UV hypersensitive mutants were generated by targeted deletion of the uvrBA operon, encoding highly conserved key components of the nucleotide excision repair. Comparative studies, which included the respective parental strains, revealed no negative side effects of the deletion, neither on enzyme secretion nor on vegetative propagation. Thus, the uvrBA locus proved to be a useful deletion target for achieving biological containment in this industrially exploited bacterium. In contrast to recA mutants, which also display UV hypersensitivity, further strain development via homologous recombination techniques will be still possible in such uvr mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号