首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TopBP1 activates the ATR-ATRIP complex   总被引:21,自引:0,他引:21  
Kumagai A  Lee J  Yoo HY  Dunphy WG 《Cell》2006,124(5):943-955
ATR is a key regulator of checkpoint responses to incompletely replicated and damaged DNA, but the mechanisms underlying control of its kinase activity are unknown. TopBP1, the vertebrate homolog of yeast Cut5/Dbp11, has dual roles in initiation of DNA replication and regulation of checkpoint responses. We show that recombinant TopBP1 induces a large increase in the kinase activity of both Xenopus and human ATR. The ATR-activating domain resides in a conserved segment of TopBP1 that is distinct from its numerous BRCT repeats. The isolated ATR-activating domain from TopBP1 induces ectopic activation of ATR-dependent signaling in both Xenopus egg extracts and human cells. Furthermore, Xenopus egg extracts containing a version of TopBP1 with an inactivating point mutation in the ATR-activating domain are defective in checkpoint regulation. These studies establish that activation of ATR by TopBP1 is a crucial step in the initiation of ATR-dependent signaling processes.  相似文献   

2.
TopBP1 serves as an activator of the ATR-ATRIP complex in response to the presence of incompletely replicated or damaged DNA. This process involves binding of ATR to the ATR-activating domain of TopBP1, which is located between BRCT domains VI and VII. TopBP1 displays increased binding to ATR-ATRIP in Xenopus egg extracts containing checkpoint-inducing DNA templates. We show that an N-terminal region of TopBP1 containing BRCT repeats I-II is essential for this checkpoint-stimulated binding of TopBP1 to ATR-ATRIP. The BRCT I-II region of TopBP1 also binds specifically to the Rad9-Hus1-Rad1 (9-1-1) complex in Xenopus egg extracts. This binding occurs via the C-terminal domain of Rad9 and depends upon phosphorylation of its Ser-373 residue. Egg extracts containing either a mutant of TopBP1 lacking the BRCT I-II repeats or a mutant of Rad9 with an alanine substitution at Ser-373 are defective in checkpoint regulation. Furthermore, an isolated C-terminal fragment from Rad9 is an effective inhibitor of checkpoint signaling in egg extracts. These findings suggest that interaction of the 9-1-1 complex with the BRCT I-II region of TopBP1 is necessary for binding of ATR-ATRIP to the ATR-activating domain of TopBP1 and the ensuing activation of ATR.  相似文献   

3.
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.  相似文献   

4.
ATR is a critical upstream regulator of checkpoint responses to incompletely replicated and damaged DNA. However, it had not been understood how the kinase activity of ATR is switched on during checkpoint responses. TopBP1 and its homologs are necessary for both DNA replication and checkpoint control. A recent report from this laboratory demonstrated that TopBP1 functions as an activator of ATR. It had been known that TopBP1 accumulates at sites of replicative stress and DNA damage. Thus, interaction of ATR with a critical protein at stalled replication forks and sites of DNA damage triggers its activation. This finding helps to explain how aberrant DNA structures in the genome induce ATR-dependent signaling processes.  相似文献   

5.
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.  相似文献   

6.
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.  相似文献   

7.
The DNA damage response kinase ATR is an essential regulator of genome integrity. TopBP1 functions as a general activator of ATR. We have recently shown that TopBP1 activates ATR through its regulatory subunit ATRIP and a PIKK regulatory domain (PRD) located adjacent to its kinase domain. This mechanism of ATR activation is conserved in the S. cerevisiae ortholog Mec1. ATR is a member of the PIKK family of protein kinases that includes ATM, DNA-PKcs, mTOR, and SMG1. The PRD regulates the kinase activity of other PIKKs and may serve as a site of interaction between these kinase and their respective activators. Activation of ATR by TopBP1 is maximal at low substrate concentrations and declines exponentially as substrate concentration increases. These data are consistent with a model in which TopBP1 acts to alter the conformation of ATR-ATRIP to increase the ability of ATR to bind substrates. A further understanding of the mechanism of ATR activation will likely provide insights into the regulation of related PIK kinases.  相似文献   

8.
DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.  相似文献   

9.
The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.  相似文献   

10.
In the presence of double-stranded DNA breaks (DSBs), the activation of ATR is achieved by the ability of ATM to phosphorylate TopBP1 on serine 1131, which leads to an enhancement of the interaction between ATR and TopBP1. In Xenopus egg extracts, the Mre11-Rad50-Nbs1 (MRN) complex is additionally required to bridge ATM and TopBP1 together. In this report, we show that CtIP, which is recruited to DSB-containing chromatin, interacts with both TopBP1 and Nbs1 in a damage-dependent manner. An N-terminal region containing the first two BRCT repeats of TopBP1 is essential for the interaction with CtIP. Furthermore, two distinct regions in the N-terminus of CtIP participate in establishing the association between CtIP and TopBP1. The first region includes two adjacent putative ATM/ATR phosphorylation sites on serines 273 and 275. Secondly, binding is diminished when an MRN-binding region spanning residues 25–48 is deleted, indicative of a role for the MRN complex in mediating this interaction. This was further evidenced by a decrease in the interaction between CtIP and TopBP1 in Nbs1-depleted extracts and a reciprocal decrease in the binding of Nbs1 to TopBP1 in the absence of CtIP, suggestive of the formation of a complex containing CtIP, TopBP1, and the MRN complex. When CtIP is immunodepleted from egg extracts, the activation of the response to DSBs is compromised and the levels of ATR, TopBP1, and Nbs1 on damaged chromatin are reduced. Thus, CtIP interacts with TopBP1 in a damage-stimulated, MRN-dependent manner during the activation of ATR in response to DSBs.  相似文献   

11.
Herpes Simplex Virus type 1 (HSV-1) has evolved to disable the cellular DNA damage response kinase, ATR. We have previously shown that HSV-1-infected cells are unable to phosphorylate the ATR substrate Chk1, even under conditions in which replication forks are stalled. Here we report that the HSV-1 single stranded DNA binding protein (ICP8), and the helicase/primase complex (UL8/UL5/UL52) form a nuclear complex in transfected cells that is necessary and sufficient to disable ATR signaling. This complex localizes to sites of DNA damage and colocalizes with ATR/ATRIP and RPA, but under these conditions, the Rad9-Rad1-Hus1 checkpoint clamp (9-1-1) do not. ATR is generally activated by substrates that contain ssDNA adjacent to dsDNA, and previous work from our laboratory has shown that ICP8 and helicase/primase also recognize this substrate. We suggest that these four viral proteins prevent ATR activation by binding to the DNA substrate and obstructing loading of the 9-1-1 checkpoint clamp. Exclusion of 9-1-1 prevents recruitment of TopBP1, the ATR kinase activator, and thus effectively disables ATR signaling. These data provide the first example of viral DNA replication proteins obscuring access to a DNA substrate that would normally trigger a DNA damage response and checkpoint signaling. This unusual mechanism used by HSV suggests that it may be possible to inhibit ATR signaling by preventing recruitment of the 9-1-1 clamp and TopBP1.  相似文献   

12.
ATR autophosphorylation as a molecular switch for checkpoint activation   总被引:1,自引:0,他引:1  
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase is a master checkpoint regulator safeguarding the genome. Upon DNA damage, the ATR-ATRIP complex is recruited to sites of DNA damage by RPA-coated single-stranded DNA and activated by an elusive process. Here, we show that ATR is transformed into a hyperphosphorylated state after DNA damage, and that a single autophosphorylation event at Thr 1989 is crucial for ATR activation. Phosphorylation of Thr 1989 relies on RPA, ATRIP, and ATR kinase activity, but unexpectedly not on the ATR stimulator TopBP1. Recruitment of ATR-ATRIP to RPA-ssDNA leads to congregation of ATR-ATRIP complexes and promotes Thr 1989 phosphorylation in trans. Phosphorylated Thr 1989 is directly recognized by TopBP1 via the BRCT domains 7 and 8, enabling TopBP1 to engage ATR-ATRIP, to stimulate the ATR kinase, and to facilitate ATR substrate recognition. Thus, ATR autophosphorylation on RPA-ssDNA is a molecular switch to launch robust checkpoint response.  相似文献   

13.
DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4(TopBP1) AAD-defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage-independent assay for checkpoint activation that is Rad4(TopBP1) AAD-dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb2(53BP1). Consistent with a model where Rad4(TopBP1) AAD-dependent checkpoint activation is ssDNA/RPA-independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4(TopBP1) AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4(TopBP1) AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD-dependent Rad3(ATR) checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein-chromatin interactions.  相似文献   

14.
Bartek J  Mailand N 《Cell》2006,124(5):888-890
The nuclear protein kinase ATR is a key regulator of genome integrity that functions at checkpoints for damaged or incompletely replicated DNA. In this issue of Cell, Kumagai et al. (2006) shed light on the molecular mechanism that controls ATR. They report that a physical interaction between ATR and a distinct domain of TopBP1 greatly enhances ATR kinase activity.  相似文献   

15.
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.  相似文献   

16.
Mammalian TopBP1 is a BRCT domain-containing protein whose function in mitotic cells is linked to replication and DNA damage checkpoint. Here, we study its possible role during meiosis in mice. TopBP1 foci are abundant during early prophase I and localize mainly to histone gamma-H2AX-positive domains, where DNA double-strand breaks (required to initiate recombination) occur. Strikingly, TopBP1 showed a pattern almost identical to that of ATR, a PI3K-like kinase involved in mitotic DNA damage checkpoint. In the synapsis-defective Fkbp6(-/-) mouse, TopBP1 heavily stains unsynapsed regions of chromosomes. We also tested whether Schizosaccharomyces pombe Cut5 (the TopBP1 homologue) plays a role in the meiotic recombination checkpoint, like spRad3, the ATR homologue. Indeed, we found that a cut5 mutation suppresses the checkpoint-dependent meiotic delay of a meiotic recombination defective mutant, indicating a direct role of the Cut5 protein in the meiotic checkpoint. Our findings suggest that ATR and TopBP1 monitor meiotic recombination and are required for activation of the meiotic recombination checkpoint.  相似文献   

17.
ATR kinase activation requires the recruitment of the ATR-ATRIP and RAD9-HUS1-RAD1 (9-1-1) checkpoint complexes to sites of DNA damage or replication stress. Replication protein A (RPA) bound to single-stranded DNA is at least part of the molecular recognition element that recruits these checkpoint complexes. We have found that the basic cleft of the RPA70 N-terminal oligonucleotide-oligosaccharide fold (OB-fold) domain is a key determinant of checkpoint activation. This protein-protein interaction surface is able to bind several checkpoint proteins, including ATRIP, RAD9, and MRE11. RAD9 binding to RPA is mediated by an acidic peptide within the C-terminal RAD9 tail that has sequence similarity to the primary RPA-binding surface in the checkpoint recruitment domain (CRD) of ATRIP. Mutation of the RAD9 CRD impairs its localization to sites of DNA damage or replication stress without perturbing its ability to form the 9-1-1 complex or bind the ATR activator TopBP1. Disruption of the RAD9-RPA interaction also impairs ATR signaling to CHK1 and causes hypersensitivity to both DNA damage and replication stress. Thus, the basic cleft of the RPA70 N-terminal OB-fold domain binds multiple checkpoint proteins, including RAD9, to promote ATR signaling.  相似文献   

18.
In the presence of double-stranded DNA breaks (DSBs), the activation of ATR is achieved by the ability of ATM to phosphorylate TopBP1 on serine 1131, which leads to an enhancement of the interaction between ATR and TopBP1. In Xenopus egg extracts, the Mre11-Rad50-Nbs1 (MRN) complex is additionally required to bridge ATM and TopBP1 together. In this report, we show that CtIP, which is recruited to DSB-containing chromatin, interacts with both TopBP1 and Nbs1 in a damage-dependent manner. An N-terminal region containing the first two BRCT repeats of TopBP1 is essential for the interaction with CtIP. Furthermore, two distinct regions in the N-terminus of CtIP participate in establishing the association between CtIP and TopBP1. The first region includes two adjacent putative ATM/ATR phosphorylation sites on serines 273 and 275. Secondly, binding is diminished when an MRN-binding region spanning residues 25–48 is deleted, indicative of a role for the MRN complex in mediating this interaction. This was further evidenced by a decrease in the interaction between CtIP and TopBP1 in Nbs1-depleted extracts and a reciprocal decrease in the binding of Nbs1 to TopBP1 in the absence of CtIP, suggestive of the formation of a complex containing CtIP, TopBP1 and the MRN complex. When CtIP is immunodepleted from egg extracts, the activation of the response to DSBs is compromised and the levels of ATR, TopBP1 and Nbs1 on damaged chromatin are reduced. Thus, CtIP interacts with TopBP1 in a damage-stimulated, MRN-dependent manner during the activation of ATR in response to DSBs.Key words: CtIP, TopBP1, ATR, Nbs1, cell cycle control, checkpoint mechanisms, Xenopus egg extract  相似文献   

19.
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号