首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular haemoglobin of the marine polychaete, Arenicola marina, is a hexagonal bilayer haemoglobin of approximately 3600 kDa, formed by the covalent and noncovalent association of many copies of both globin subunits (monomer and trimer) and nonglobin or 'linker' subunits. In order to analyse the interactions between globin and linker subunits, dissociation and reassociation experiments were carried out under whereby Arenicola hexagonal bilayer haemoglobin was exposed to urea and alkaline pH and the effect was followed by gel filtration, SDS/PAGE, UV-visible spectrophotometry, electrospray-ionization MS, multiangle laser light scattering and transmission electron microscopy. The analysis of Arenicola haemoglobin dissociation indicates a novel and complex mechanism of dissociation compared with other annelid extracellular haemoglobins studied to date. Even though the chemically induced dissociation triggers partial degradation of some subunits, spontaneous reassociation was observed, to some extent. Parallel dissociation of Lumbricus haemoglobin under similar conditions shows striking differences that allow us to propose a hypothesis on the nature of the intersubunit contacts that are essential to form and to hold such a complex quaternary structure.  相似文献   

2.
The rates of two processes in alkaline (pH 10.5–11.5) myosin solutions at 0 °C have been investigated: production of ionized tyrosine residues and production of light subunits. The progressive absorbance change is shown to result from a first-order irrevocable exposure to solvent and subsequent ionization of 40% of the tyrosine residues. Extrapolation to zero time gives the spectrophotometric ionization curve for native myosin; the pK of the abnormal tyrosines exceeds 12. Similarly, extrapolation to infinite time gives the curve for denatured myosin; the pK of the normal tyrosines (and of all tyrosines after denaturation) is 11.0–11.6. From the pH dependence of the rate, it is found that activation requires ionization of six residues and that their pK is much greater than 11.3. The rate of production of subunits was determined by fractionating the reaction mixture and determining the weight of light subunits produced. The process is also first order. Within experimental error, the rate constants for these two processes are equal. We conclude that they have the same rate-determining step. The data are consistent with either of two simple possible mechanisms. These are a rapid conformation change, followed by rate-determining subunit dissociation, followed by a rapid, irrevocable conformation change; or, a rapid conformation change, followed by a rate-determining, irrevocable conformation change, followed by rapid subunit dissociation.  相似文献   

3.
After termination of protein synthesis in bacteria, ribosomes are recycled from posttermination complexes by the combined action of elongation factor G (EF-G), ribosome recycling factor (RRF), and initiation factor 3 (IF3). The functions of the factors and the sequence in which ribosomal subunits, tRNA, and mRNA are released from posttermination complexes are unclear and, in part, controversial. Here, we study the reaction by rapid kinetics monitoring fluorescence. We show that RRF and EF-G with GTP, but not with GDPNP, promote the dissociation of 50S subunits from the posttermination complex without involving translocation or a translocation-like event. IF3 does not affect subunit dissociation but prevents reassociation, thereby masking the dissociating effect of EF-G-RRF under certain experimental conditions. IF3 is required for the subsequent ejection of tRNA and mRNA from the small subunit. The latter step is slower than subunit dissociation and constitutes the rate-limiting step of ribosome recycling.  相似文献   

4.
Previous biophysical and biochemical studies have not detected any free monomeric subunits when multimeric molecules of the metalloprotein, ferritin, were highly diluted with water. Electron microscope examination of diluted ferritin reveals many single objects much smaller than the whole molecules. These small objects are interpreted as being free apoferritin subunits. Since these small objects can be found in samples that originally contain only whole molecules, this result indicates that subunits indeed can dissociate from ferritin upon dilution. The available evidence suggests that the dissociation of subunits normally is balanced by a rapid reassociation into the polymeric state.  相似文献   

5.
Sergienko EA  Jordan F 《Biochemistry》2002,41(19):6164-6169
The tetrameric enzyme yeast pyruvate decarboxylase (YPDC) has been known to dissociate into dimers at elevated pH values. However, the interface along which the dissociation occurs, as well as the fundamental kinetic properties of the resulting dimers, remains unknown. The active sites of YPDC are comprised of amino acid residues from two subunits, a property which we utilize to address the issue as to which dimer interface is cleaved under different conditions of dissociation. Hydroxide-induced dissociation of the active site D28A (or D28N) and E477Q variants, each at least 100 times less reactive than wild-type YPDC, followed by reassociation of D28A (or D28N) and E477Q variants led to a remarkable 35-50-fold increase in activity. This result is possible only if the hydroxide-induced dissociation results in a cleavage along the interface between two subunits so that residues D28 and E477 are now separated. Upon reassociation, one of the two active sites of the hybrid dimer will have both residues substituted, whereas the second one will be of the wild-type phenotype. In contrast to the hydroxide-induced dimers, the urea-induced dissociation recently proposed results in dissociation along dimer-dimer interfaces, without separating the active sites, and therefore, on reassociation, these dimers do not regain activity. The significance of the results is discussed in light of a recently proposed alternating sites mechanism for YPDC. A preparative ion-exchange method is reported for the separation and purification of hybrid enzymes.  相似文献   

6.
The fluorescence properties of the tyrosyl residues of human chorionic gonadotropin (hCG) and its α and β subunits have been examined. The effects of pH, guanidine, and disulfide cleavage on the intensity and polarization of the fluorescence suggest that the isolated subunits possess little, if any, tertiary structure beyond that which is stabilized by the disulfide bonds. Essentially all of the fluorescence of hCG and its subunits was accessible to quenching by iodide ions. Similar results were observed for several other proteins whose fluorescence originates from tyrosyl residues. Thus, we have confirmed and extended the conclusion of R. W. Cowgill ((1966) Biochim. Biophys. Acta120, 196) that the buried tyrosyl residues in ribonuclease fluoresce with a much lower quantum yield than those which are exposed. The dissociation of hCG into its subunits was accompanied by an increase in fluorescence, suggesting the exposure of tyrosyl residues. This was confirmed by difference absorption measurements which indicate a net exposure of two to three tyrosyl residues upon dissociation of the subunits. An additional 0.6 tyrosine was exposed when the disulfide bonds of the β-subunit were cleaved. The polarization of the fluorescence of hCG-β was high (P = 0.19) and, unlike several other proteins with high polarization, could not be lowered by denaturing conditions. Only by cleavage of the disulfide bonds could the fluorescence polarization of either subunit be lowered to a value (P = 0.08) characteristic of a random polypeptide. It appears that the disulfide bonds play an important role in maintaining the rigidity of the fluorescent tyrosyl residues, located at or near the surface of the protein.  相似文献   

7.
Dissociation and reassociation of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases I and II were studied in intact AtT20 cells. Cells were stimulated with 50 microM forskolin to raise intracellular cAMP levels and induce complete dissociation of R and C subunits. After the removal of forskolin from the incubation medium cAMP levels rapidly declined to basal levels. Reassociation of R and C subunits was monitored by immunoprecipitation of cAMP-dependent protein kinase activity using anti-R immunoglobulins. The time course for reassociation of R and C subunits paralleled the loss of cellular cAMP. Total cAMP-dependent protein kinase activity and the ratio of protein kinase I to protein kinase II seen 30 min after the removal of forskolin was the same as in control cells. Similar results were seen using crude AtT20 cell extracts treated with exogenous cAMP and Mg2+. Our data showed that after removal of a stimulus from AtT20 cells inactivation of both cAMP-dependent protein kinase isoenzymes occurred by the rapid reassociation of R and C subunits to form holoenzyme. Our studies also showed that half of the type I regulatory subunit (RI) present in control cells contained bound cAMP. This represented approximately 30% of the cellular cAMP in nonstimulated cells. The cAMP bound to RI was resistant to hydrolysis by cyclic nucleotide phosphodiesterase but was dissociated from RI in the presence of excess purified bovine heart C. The RI subunits devoid of C may function to sequester cAMP and, thereby, prevent the activation of cAMP-dependent protein kinase activity in nonstimulated AtT20 cells.  相似文献   

8.
The reassociation of factor Va from its isolated subunits   总被引:4,自引:0,他引:4  
Factor Va is an essential cofactor for the activation of prothrombin catalyzed by factor Xa. The cofactor is a heterodimer composed of a light chain and a heavy chain that are associated noncovalently in the presence of divalent metal ions. The kinetics of the formation of factor Va from the isolated and separated subunits was examined by the time-dependent regain in cofactor activity using direct assays of prothrombin activation catalyzed by prothrombinase. The rate of reassociation at saturating concentrations of calcium ions was slow with a strong temperature dependence. The product of the association reaction was indistinguishable from native factor Va on the basis of activity. The second order rate constant for the process at 37 degrees C in the presence of 2 mM CaCl2 was 1.58 X 10(5) M-1.min-1. Manganese ion increased the rate of regain of activity without influencing the extent of the reaction. The previous identification of a single reactive sulfhydryl in each subunit of factor Va permitted the modification of the separated subunits with sulfhydryl-directed fluorophores. Subunit reassociation was directly measured by fluorescence energy transfer using light chain modified with 6-acryloyl-2-dimethylaminonaphthalene (fluorescence donor) and heavy chain modified with fluorescein 5-maleimide (fluorescence acceptor). Fluorescence measurements indicate that the heavy and light chains associate tightly (Kd = 5.9 x 10(-9) M) and reversibly with a stoichiometry of 1:1. The dissociation of the subunits from the cofactor is first order with a rate constant of 1.03 X 10(-3) min-1. These interpretations were confirmed by physical measurements of subunit reassociation by sedimentation velocity studies.  相似文献   

9.
The effects of neighboring residues and formulation variables on tyrosine oxidation were investigated in model dipeptides (glysyl tyrosine, N-acetyl tyrosine, glutamyl tyrosine, and tyrosyl arginine) and tripeptide (lysyl tyrosyl lysine). The tyrosyl peptides were oxidized by light under alkaline conditions by a zero-order reaction. The rate of the photoreaction was dependent on tyrosyl pK(a), which was perturbed by the presence of neighboring charged amino acid residues. The strength of light exposure, oxygen headspace, and the presence of cationic surfactant, cetyltrimethylammonia chloride had a significant effect on the kinetics of tyrosyl photo-oxidation. Tyrosine and model tyrosyl peptides were also oxidized by hydrogen peroxide/metal ions at neutral pH. Metal-catalyzed oxidation followed first-order kinetics. Adjacent negatively charged amino acids accelerated tyrosine oxidation owing to affinity of the negative charges to metal-ions, whereas positively charged amino acid residues disfavored the reaction. The oxidation of tyrosine in peptides was greatly affected by the presence of adjacent charged residues, and the extent of the effect depended on the solution environment.  相似文献   

10.
Rapid replacement of 0.15 M K gluconate with 0.15 M choline Cl led to multiphasic Ca2+ release from a heavy fraction of rabbit skeletal muscle microsomes. Following the initial lag period (0-50 ms), about 15 nmol of Ca2+/mg of protein was rapidly released with first-order rate constants k = 60-140 s-1. Subsequently, a larger amount of Ca2+ (up to 56 nmol/mg) was released at a slower rate (k = 0.8-1.5 s-1). The Ca2+ released in both rapid and slow phases was reaccumulated within 60 s. In agreement with a previous report (Caswell, A. H., Lau, Y. H., Garcia, M., and Brunschwig, J-P. (1979) J. Biol. Chem. 254, 202-208), French press treatment of the tubule/sarcoplasmic reticulum (SR) complex results in dissociation of transverse tubular membrane (T-tubules) from SR. Subsequent incubation with 0.4 M potassium cacodylate results in the reassociation of the complex, as shown by sucrose density-gradient sedimentation. Upon T-tubule dissociation, both rapid and slow Ca2+ release was inhibited. Upon reassociation, the rapid Ca2+ release was completely restored and the slow phase partially restored. The results indicate that the T-tubule associated with SR plays a crucial role in triggering rapid Ca2+ release induced by ionic replacement. Other types of Ca2+ release, e.g. those induced by Ca2+ alone or with drugs such as caffeine and quercetin, are unaffected by T-tubule dissociation, and hence produced by direct stimulation of the SR membrane.  相似文献   

11.
Horse-liver alcohol dehydrogenase has been dissociated and denatured by 6 M guanidinium hydrochloride. Removal of the denaturant under optimum conditions of the solvent leads to partial reactivation. The concentrations of the enzyme, as well as the coenzyme (NAD+), and Zn2+, affect the reactivation significantly, since high concentrations promote the formation of inactive aggregation products. Analyzing the kinetics of reactivation and reassociation, conditions far from equilibrium of dissociation-association provide maximum yields (approximately 70%). The sigmoidal kinetic traces suggest a superposition of first-order transconformation and second-order association reactions; the latter are corroborated by the concentration dependence of the reactivation reaction. The coenzyme, NAD+, has no influence on the kinetics of reactivation. Addition of Zn2+ leads to a significant decrease of the rate and yield of reactivation. The process of renaturation, as reflected by the regain of native fluorescence shows complex kinetics: rapid relaxations are followed by slower first-order and second-order processes which parallel reactivation.  相似文献   

12.
Human liver arginase (L-arginine amidinohydrolase, EC 3.5.3.1) was immobilised by attachment to nylon with glutaraldehyde as a crosslinking agent. Incubation of the immobilised tetrameric enzyme with EDTA followed by dialysis resulted in the dissociation of the enzyme into inactive matrix-bound and solubilised subunits. Both species recovered enzymatic activity after incubation with Mn2+, and the activity of the reactivated matrix-bound subunits was nearly 25% of that shown by the enzyme initially attached to the support in the tetrameric form. When the reactivated bound subunits were incubated with soluble subunits in the presence of Mn2+, they 'picked-up' from the solution an amount of protein and enzymatic activity almost identical to that initially lost by the immobilised tetramer after the dissociating treatment with EDTA. This occurred only in the presence of Mn2+. It is suggested that the reactivation of the subunits of arginase involves the initial formation of an active monomer, which then acquires a conformation that favours a reassociation to the tetrameric state.  相似文献   

13.
The two structural subunits RvH1 and RvH2 were separated after overnight dialysis of Rapana venosa Hc against 130 mM Gly/NaOH buffer, pH 9.6, on an ion exchange column Hiload 26/10 Sepharose Q using a fast performance liquid chromatography (FPLC) system. The reassociation characteristics of these two RvH isoforms and the native molecule were studied in buffers with different pH values and concentrations of Ca(2+) and Mg(2+). Reassociation of mixed RvH subunits was performed over a period of several days using a stabilizing buffer (SB) of pH 7.0 containing different concentrations of Ca(2+) and Mg(2+) ions. After 2 days of dialysis, an RvH subunit mixture of didecamers and multidecamers was observed in the presence of 100 mM CaCl(2) and MgCl(2), though RvH1 and RvH2 are biochemically and immunologically different and have also different dissociation properties. The reassociation, performed at pH 9.6 with 2 mM CaCl(2) and MgCl(2) at 4 degrees C over a period of one to several weeks, led to the formation of decameric oligomers, while didecamers formed predominantly in the SB at pH 7.0. Higher concentrations of calcium and magnesium ions led to a more rapid reassociation of RvH1 resulting in long stable multidecamers and helical tubules, which were stable and slowly dissociated into shorter multidecamers and decamers at higher pH values. The reassociation of the RvH2 structural subunit in the same buffers processed slowly and yielded didecamers, shorter tubule polymers and long multidecamers which are less stable at higher pH values. The stability of RvH isoforms under varying ionic conditions is compared with the stability of keyhole limpet (KLH, Megathura crenulata) hemocyanin (KLH) and Haliotis tuberculata hemocyanin (HtH) isoforms.The process of dissociation and reassociation is connected with changes of the fluorescence intensity at 600 nm, which can be explained by differences in opalescence of the solutions of these two isoforms. The solutions of longer tubule polymers and multidecamers of RvH1 show a higher opalescence compared to the solutions of shorter helical tubules and multidecamers of RvH2.  相似文献   

14.
1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8-10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5-5.0, the subunit reassociates to oligomer in the pH range 3.1-4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione.  相似文献   

15.
The rates of dissociation and recombination of the subunits of bovine thyrotropin have been measured under a variety of conditions using the fluorescence probe 1,8-anilinonaphthalenesulfonate. The method is based on the fact that the native hormone strongly enhances the fluorescence of 1,8-anilinonaphthalenesulfonate whereas the subunits have very little effect. The hormone can be easily dissociated into subunits, either in dilute acid (pH < 4) or in concentrated (8–10 m) urea solutions at pH 8.O. The rate of dissociation is first order with time and increases strongly with increasing temperature. The hormone is very stable in alkali, showing little tendency to dissociate below pH 12. After dissociation in acid, the subunits can be recombined between pH 7 and 9 at a rate which increases with increasing temperature and subunit concentration. The recombination is intermediate between first and second order suggesting a two-step mechanism: association of the subunits followed by a first-order refolding process in which the subunits acquire the tertiary structure characterisitc of the native hormone. Difference absorption measurements indicate that the dissociation is accompanied by the exposure of a substantial fraction of the 16 tyrosine residues to the more polar aqueous environment, suggesting major conformational changes in one or both subunits.  相似文献   

16.
Hemerythrin from Siphonosoma cumanense has a trimeric structure consisting of identical subunits, which have no cooperativity nor Bohr effect on oxygen-binding. The trimer was dissociated into its monomers by the modification of the SH group of its cysteines with p-chloromercuriphenylsulfonic acid (PCMPS), which was monitored by stopped-flow of both spectrophotomeric and small angle X-ray scattering methods. The results showed that the process involved sequential modification of the SH groups, dissociation into monomers, and auto-oxidation of ferrous iron in the active center. The modification of the SH groups with PCMPS followed second-order kinetics with a rate constant of 1.8 M-1.s-1. The dissociation and auto-oxidation followed first-order kinetics with rate constants of 4 X 10(-3) s-1 and 5 X 10(-4) s-1, respectively. The obtained rate of auto-oxidation was much faster than that in the native state. These findings lead to the conclusion that the trimeric state of S. cumanense hemerythrin is necessary to prevent auto-oxidation.  相似文献   

17.
The acid-alkaline pH-jump in suspension of crystalline sheep hemoglobin has been studied in the range of 5.95 to 8.94. Crystals suspended in 3.8 M Cs2SO4 show a rapid optical transition of half-time equal to or less than 2 ms. As the ammonia concentration is increased in the Cs2SO4-suspended crystals, a second optical transition is observed as a pseudo-first-order reaction, with a rate constant of between 10 and 15 s-1. The alkaline-acid pH-jump proceeds through a very rapid shift of the alkaline-acid equilibrium and is followed by a first-order dissociation constant between 9 and 12 s-1. The dissociation of the ammonia is biphasic, and the ratio between the fast and slow phases is 9.  相似文献   

18.
The dissociation of the cofactor, acetylglutamate, from the enzyme-cofactor complex formed by carbamoyl-phosphate synthetase I of rat liver in the presence of ATP, Mg2+, K+ and HCO-3 has been studied by centrifugal gel filtration. The rate of its dissociation (k, 0.13 s-1) is considerably slower than the rate of enzyme turnover (approximately equal to 6 s-1) and it is not increased by ammonia, although ammonia reduces the rate of reassociation of the cofactor. Omission of ATP, Mg2+ or K+ from the column buffer leads to virtually complete dissociation of bound acetylglutamate during passage through the column (0.5-2 min), owing to an increase in dissociation and a decrease in reassociation, but reduction of free Mg2+ alone has the opposite action. Dilution of the enzyme-cofactor complex into a large volume of buffer causes a biphasic loss of enzyme activity with a t1/2 of the first phase comparable with that of the dissociation of acetylglutamate. These findings show (a) that acetylglutamate does not dissociate with each turnover of the enzyme; (b) that there are rapid interactions between binding of acetylglutamate and ATPA (ATPA yields Pi in the overall reaction), Mg2+ and K+, suggesting that these ligands bind in close proximity; and (c) that the enzyme transiently retains considerable activity after dissociation of the cofactor.  相似文献   

19.
The rate of formation of human chorionic gonadotropin from its alpha and beta subunits has been measured at neutral pH and 37 degrees C as a function of subunit concentration, using the fluorescence probe, 1,8-anilinoaphthalene-sulfonate (ANS), to monitor the reaction. The subunits were prepared by acid dissociation of the intact hormone (pH less than or equal to 2, 37 degrees C). Following neutralization, the rate of appearance of ANS fluorescence was identical with the rate of recovery of receptor binding activity and both of these properties were completely recovered. Kinetic data obtained over a 100-fold range of subunit concentrations (1.5 to 146 muM) were not compatible with a simple second-order reaction scheme, but required at least one additional step. The data were best fit by a model in which the subunits reversibly form an intermediate complex (alpha + beta in equilibrium alphabeta) which then undergoes a conformational rearrangement to form the native structure (alphabeta leads to H). Ultraviolet difference absorption measurements suggest that most of the change in the environment of the tyrosyl residues occurs during this second step.  相似文献   

20.
Reversibility of coated vesicle dissociation   总被引:3,自引:0,他引:3  
The dissociation of the coated vesicles to clathrin and uncoated vesicles and their reassociation have been studied under various conditions. The extent of reassociation is pH dependent and increases slightly with increasing concentrations of the components. Unlike the self-association of clathrin which is strongly salt dependent, the reassociation of clathrin and uncoated vesicles is practically independent of salt concentration. The coated vesicle gradually loses its coat with increasing pH, and the dissociation process is not an all or none reaction. Ca2+ inhibits dissociation of the coated vesicles and enhances the reassociation of clathrin and uncoated vesicles. Our results show that, although many conditions result in reassociation of protein and lipid vesicle, few conditions result in vesicles of both the same size and composition as native coated vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号