首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Low doses of dopamine agonists (DA) and levodopa are effective in the treatment of restless legs syndrome (RLS). A range of impulse control and compulsive behaviours (ICBs) have been reported following the use of DAs and levodopa in patients with Parkinson's disease. With this study we sought to assess the cross-sectional prevalence of impulse control behaviours (ICBs) in restless legs syndrome (RLS) and to determine factors associated with ICBs in a population cohort in Germany.  相似文献   

2.
Patients with Parkinson's disease (PD) sometimes develop impulsive compulsive behaviours (ICBs) due to their dopaminergic medication. We compared 26 impulsive and 27 non-impulsive patients with PD, both on and off medication, on a task that examined emotion bias in decision making. No group differences were detected, but patients on medication were less biased by emotions than patients off medication and the strongest effects were seen in patients with ICBs. PD patients with ICBs on medication also showed more learning from negative feedback and less from positive feedback, whereas off medication they showed the opposite effect.  相似文献   

3.
《Biophysical journal》2022,121(16):3162-3171
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model’s equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated—one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.  相似文献   

4.
The seventh Edition of “Innovative Therapy, Monoclonal Antibodies and Beyond” Meeting took place in Milan, Italy, on January 27, 2017. The two sessions of the meeting were focused on: 1) Preclinical assays and novel biotargets; and 2) monoclonal antibodies, cell therapies and targeted molecules. Between these two sessions, a lecture entitled “HLA-antigens modulation and response to immune checkpoint inhibitor immunotherapy” was also presented. Despite the impressive successes in cancer immunotherapy in recent years, the response to immune based interventions occurs only in a minority of patients (∼20%). Several basic and translational mechanisms of resistance to immune checkpoint blockers (ICBs) were discussed during the meeting: 1. the impact of tumor microenvironment on the activity of immune system; 2. strategies to inhibit the cross-talk between extracellular matrix and myeloid-derived suppressor cells (MDSC) in the preclinical setting; 3. microRNA expression as a biomarker and as a target of therapy in non-small cell lung cancer (NSCLC); 4. the significance of complement activation pathways in response to immune checkpoint inhibitors; 5. the immunosuppressive activity of the microbiota by inducing IL-17 producing cells; and 6. modulation of HLA antigens as possible markers of response to ICB therapy. In order to overcome the deficiency in active anti-tumor T cells, several clinically applicable combination strategies were also discussed: 1. strategies to enhance the anticancer effects of immunogenic cell death inducing-chemotherapy; 2. the use of CAR T-cells in solid tumors; 3. the use of combination strategies involving oncolytic viruses and ICBs; 4. combinations of new ICBs with anti-PD-1/CTLA-4 therapy; and 4. combinations of targeted therapies and ICBs in melanoma. Overall, this conference emphasized the many novel strategies that are being investigated to improve the overall patient response to cancer immunotherapy. Optimization of biomarkers to accurately select patients who will respond to immunotherapy, coupled with combination strategies to improve long term patient survival remain critical challenges in the immuno-oncology field.  相似文献   

5.
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic cancer and is among the major causes of mortality due to cancer. Due to the lack of efficient conventional therapeutic options for this cancer, particularly in advanced cases, novel treatments including immunotherapy have been considered. However, despite the encouraging clinical outcomes after implementing these innovative approaches, such as oncolytic viruses (OVs), adoptive cell therapies (ACT), immune checkpoint blockades (ICBs), and cancer vaccines, several factors have restricted their therapeutic effect. The main concern is the existence of an immunosuppressive tumor microenvironment (TME). Combination of different ICBs or ICBs plus tyrosine kinase inhibitors have shown promising results in overcoming these limiting factors to some extent. Combination of programmed cell death ligand-1 (PD-L1) antibody Atezolizumab and vascular endothelial growth factor (VEGF) antibody Bevacizumab has become the standard of care in the first-line therapy for untestable HCC, approved by regulatory agencies. This paper highlighted a wide overview of the direct and indirect immunotherapeutic strategies proposed for the treatment of HCC patients and the common challenges that have hindered their further clinical applications.  相似文献   

6.
With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results. However, despite the initial success of ICB-treatment, still a minority of patients experience durable responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by stromal cells to acquired genetic alterations leading to immune escape. Increasing the response rates to ICBs requires insight into the mechanisms underlying resistance and the subsequent design of rational therapeutic combinations on a per patient basis. In this review, we aim to establish order into the mechanisms governing primary and secondary ICB resistance, offer therapeutic options to circumvent different modes of resistance and plea for a personalized medicine approach to maximize immunotherapeutic benefit for all cancer patients.  相似文献   

7.
徐燕  高音 《生物工程学报》2008,24(8):1485-1489
通过PCR技术扩增大肠杆菌L-酒石酸脱氢酶b亚基(L-tartrate dehydratase beta subunit, TtdB)野生型与Cys/Ser突变型目的基因, 构建带6×His标签的诱导型表达载体pTrcHisC-TtdB。重组蛋白以包含体形式存在, 应用TALON固定化金属亲和树脂(Immobilized metal affinity chromatography, IMAC)以变性的方法纯化, 通过分步透析逐步去除变性剂的方法复性, 复性率可达70%。将复性后的两种蛋白通过热诱导去折叠和氧化重折叠方法进行体外蛋白质分子交联实验。SDS-PAGE分析表明: 野生型TtdB在其变性的临界温度反应时, 出现交联二聚体和多聚体; 在氧化重折叠后SDS-PAGE前加入100 mmol/L DTT时, 交联强度明显减弱。这种DTT打不开的交联即为异肽键交联; 若在其氧化重折叠反应液中加入DTT则没有任何交联。突变型TtdB在与野生型TtdB相同的热诱导去折叠条件下, 完全没有二聚体和多聚体的形成。  相似文献   

8.
The relationship between the timing of both sperm nuclear decondensation and male pronucleus formation in the oocyte and the relative level of disulfide bonds within the sperm nucleus was evaluated. Since reduction of sperm nuclear disulfide (S-S) bonds is a prerequisite for sperm nuclear decondensation in vitro and in vivo, we hypothesized that sperm nuclei with relatively few S-S bonds would require less time to decondense in the oocyte than sperm nuclei with higher numbers of S-S bonds, and that male pronucleus formation would occur more rapidly as well. Four types of hamster sperm nuclei, in which the extent of S-S bonding differed, were microinjected into hamster oocytes, and the time course of sperm nuclear decondensation and male pronucleus formation was charted. Cauda epididymal sperm nuclei, which are rich in S-S bonds, required 45-60 min to decondense. In contrast, nuclei containing few S-S bonds (namely sonication-resistant spermatid nuclei and cauda epididymal sperm nuclei treated in vitro with the S-S bond-reducing agent dithiothreitol) decondensed within 5-10 min of microinjection. Caput epididymal sperm nuclei, with intermediate S-S bond content, decondensed in 10-20 min. Regardless of when decondensation occurred, formation of the male pronucleus never preceded that of the female pronucleus, which occurred 1.25-1.5 h after microinjection. However, sperm nuclei with few S-S bonds were more likely than S-S rich nuclei to transform into male pronuclei in synchrony with the formation of the female pronucleus. We conclude that the timing sperm nuclear decondensation and pronucleus formation depends in part upon the S-S bond content of the sperm nucleus.  相似文献   

9.
10.
Incorporation of mannoproteins into the walls of Candida albicans blastospores (yeast phase) was followed by continuous labelling and pulse-chase experiments. The effect in the process of compounds that interfere with synthesis (papulacandin B) or assembly (calcofluor white) of structural polymers was also assessed. Mannoproteins which are kept in place by non-covalent bonds (mainly hydrogen bonds) were incorporated rapidly after their release into the periplasmic space, this process being blocked by calcofluor white. The stain had no effect on the incorporation of covalently linked mannoproteins. Papulacandin B inhibited formation of beta-glucans and incorporation of covalently linked mannoprotein molecules, whereas incorporation of hydrogen-bonded species took place normally. The results suggest that the formation of the non-covalent bonds between the mannoproteins occurs once they are secreted into the periplasmic space, whereas the formation of covalent connections between mannoproteins and wall glucan takes place at the level of the plasma membrane.  相似文献   

11.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

12.
We have measured the intracellular rates of formation of the six disulfide bonds in the human chorionic gonadotropin beta subunit (hCG-beta) to determine whether the folding pathway of this molecule can be described by a simple sequential model. If such a model is correct, the formation of disulfide bonds, which is indicative of tertiary structural changes during protein folding, should occur in a discrete order. The individual rates of disulfide bridging were determined by identifying the extent of disulfide bond formation in hCG-beta intermediates purified from choriocarcinoma cells that had been metabolically labeled for 40 to 120 s and chased for 0 to 25 min. The results of these kinetic studies describe a folding pathway in which the disulfide bonds between cysteines 34-88, 38-57, 9-90 and 23-72 stabilize, in a discrete order, the putative domain(s) involving amino acids 1-90 of hCG-beta. However, the S-S bonds 93-100 and 26-110 begin to form before the complete formation of the disulfide bonds that stabilize the amino acid 1-90 domain(s), and continue to form after complete formation of these disulfide bonds, suggesting that hCG-beta does not fold by a simple sequential pathway. The order of completion of each of the six disulfide bonds of hCG-beta is: 34-88 (t1/2 = 1-2 min), 38-57 (t1/2 = 2-3 min), 9-90 and 23-72, 93-100, and 26-110. Moreover, 60-100% of each of the six disulfide bonds form posttranslationally, and nonnative disulfide bonds do not form in detectable amounts during intracellular folding of hCG-beta.  相似文献   

13.
The effect of different conditions on the formation and properties of cryogels prepared by the freezing-thawing procedure from suspensions and solutions of the carp (Cyprinus carpio) myofibrillar proteins was studied. The freezing of water solutions and suspensions of the native myofibrillar proteins resulted in the formation of the structures mainly stabilized by non-covalent bonds. When muscle proteins were denatured prior to the freezing they formed the structures stabilized by both non-covalent and covalent disulfide bonds.  相似文献   

14.
The Plasmodium vivax merozoite surface protein-1 (PvMSP-1) has been considered a candidate for a malaria vaccine against erythrocytic stages. PvMSP-1 is immunogenic during natural infections and exhibits antigenic polymorphism. The extent of genetic polymorphism in a region between the so-called interspecies conserved blocks (ICBs) 2 and 4 of the PvMSP-1 was analyzed in 20 isolates taken from patients from two different areas in Colombia. Variation is unevenly distributed along this gene segment among the isolates. Comparative analysis of these sequences led to the definition of five sequence types (ST1 to 5). ST1 to ST4 exhibit a variation pattern associated with sequences present in the Salvador or Belem sequences. However, ST5 has clusters of sequence that have not been previously described. The changes found along the five variants confirm the important role of recombinational and/or gene conversion events in generating allelic diversity.  相似文献   

15.
A white rot basidiomycete, Ceriporiopsis subvermispora, degraded vulcanized natural rubber (NR) sheets on a wood medium. The fungus decreased the total sulfur content of the rubber by 29% in 200 days, accompanied by the cleavage of sulfide bonds between polyisoprene chains. X-ray photoelectron spectroscopy (XPS) demonstrated that C. subvermispora reduced the frequency of S-C bonds by 69% with a concomitant formation of S-O bonds during the culture period. Dipolar decoupling/magic angle spinning (DD/MAS) solid state 13C NMR revealed that the fungus preferentially decomposed monosulfide bonds linked to a cis- and trans-1,4-isoprene backbone but the cleavage of polysulfide bonds was also observed. In contrast, no decrease in weight or devulcanization of rubber was observed in cultures of a white rot fungus, Dichomitus squalens. The oxidative cleavage of sulfide bonds by C. subvermispora demonstrates that ligninolytic basidiomycetes are potential microbes for the biological devulcanization of rubber products.  相似文献   

16.
Metallothionein (MT) releases zinc under oxidative stress conditions in cultured cells. The change in the MT molecule after zinc release in vivo is unknown although in vitro studies have identified MT disulfide bond formation. The present study was undertaken to test the hypothesis that MT disulfide bond formation occurs in vivo. A cardiac-specific MT-overexpressing transgenic mouse model was used. Mice were administered saline as a control or doxorubicin (20 mg/kg), which is an effective anticancer drug but with severe cardiac toxicity at least partially because of the generation of reactive oxygen species. A differential alkylation of cysteine residues in MT of the heart extracts was performed. Free and metal-bound cysteines were first trapped by N-ethylmaleimide and the disulfide bonds were reduced by dithiothreitol followed by alkylation with radiolabeled iodoacetamide. Analyses of the differentially alkylated MTs in the heart extract by high performance liquid chromatography, SDS-PAGE, Western blot, and mass spectrometry revealed that disulfide bonds were present in MT in vivo under both physiological and oxidative stress conditions. More disulfide bonds were found in MT under the oxidative stress conditions. The MT disulfide bonds were likely intramolecular and both alpha- and beta-domains were involved in the disulfide bond formation, although the alpha-domain appeared to be more easily oxidized than the beta-domain. The results suggest that under physiological conditions, the formation of MT disulfide bonds is involved in the regulation of zinc homeostasis. Additional zinc release from MT under oxidative stress conditions is accompanied by more MT disulfide bond formation.  相似文献   

17.
We have found that a hexadeoxyribonucleotide (5′TGGGAG3′, R-95288), Koizumi, M. et al. Bioorganic & Medicinal Chemistry, 1997, 5, 2235, bearing a 3,4-dibenzyloxybenzyl (3,4-DBB) group at the 5′-end and a 2-hydroxyethylphosphate at the 3′-end, has high anti-HIV-1 activity and the least cytotoxicity in vitro and in vivo. In order to synthesize more potent hexadeoxyribonucleotides, we substituted phosphodiester (P---O) bonds in the 6-mer with the least phosphorothioate (P---S), phosphoramidate (P---N), or methylphosphonate (P---Me) bonds. When more than two P---N or P---Me bonds were introduced into a 6-mer, the phosphate-modified 6-mers had weak or no anti-HIV-1 activity, in spite of quadruplex structure formation. However, when P---S bonds were substituted for P---O bonds, anti-HIV-1 activity of their 6-mers did not dramatically decrease, compared with compounds substituted with P---N or P---Me bonds. The results suggest that the formation of a quadruplex structure is not always sufficient for anti-HIV-1 activity of the 6-mer, and that net negative charges derived from P---O or P---S bonds in the quadruplex are important for anti-HIV-1 activity. Moreover, among various phosphate-modified ODNs, we found that the anti-HIV-1 activity of ODN PS7 with only one P---S bond was the same as that of R-95288, both having a high stability in human plasma.  相似文献   

18.
Formation of a noncanonical base pair between dFTP, a dTTP analogue that cannot form H bonds, and the fluorescent base analogue 2-aminopurine (2AP) was studied in order to discover how the bacteriophage T4 DNA polymerase selects nucleotides with high accuracy. Changes in 2AP fluorescence intensity provided a spectroscopic reporter of the nucleotide binding reactions, which were combined with rapid-quench, pre-steady-state reactions to measure product formation. These studies supported and extended previous findings that the T4 DNA polymerase binds nucleotides in multiple steps with increasing selectivity. With 2AP in the template position, initial dTTP binding was rapid but selective: K(d(dTTP)) (first step) = 31 microM; K(d(dCTP)) (first step) approximately 3 mM. In studies with dFTP, this step was revealed to have two components: formation of an initial preinsertion complex in which H bonds between bases in the newly forming base pair were not essential, which was followed by formation of a final preinsertion complex in which H bonds assisted. The second nucleotide binding step was characterized by increased discrimination against dTTP binding opposite template 2AP, K(d) (second step) = 367 microM, and additional conformational changes were detected in ternary enzyme-DNA-dTTP complexes, as expected for forming closed complexes. We demonstrate here that the second binding step occurs before formation of the phosphodiester bond. Thus, the high fidelity of nucleotide insertion by T4 DNA polymerase is accomplished by the sequential application of selectivity in first forming accurate preinsertion complexes, and then additional conformational changes are applied that further increase discrimination against incorrect nucleotides.  相似文献   

19.
In this study, the lipoxygenase (ana-LOX) gene from Anabaena sp. PCC 7120 was successful expressed and secreted in Bacillus subtilis. Under the control of the P43 promoter, with a signal peptide from the B. subtilis 168 nprB gene, and facilitated by the molecular chaperone PrsA, the production of the recombinant ana-LOX (ana-rLOX) reached 76 U/mL (171.9 μg/ml) in the supernatant. The purified ana-rLOX was investigated for its effect on dough protein. Ana-rLOX treatment decreased free sulfhydryl groups, increased glutenin macropolymer content, promoted the formation of covalent bonds between gluten protein, and affected protein crosslinking. The results indicated that large aggregates involving gliadin and glutenin were formed. The glutenin macropolymer played a role in the formation of the dough network structure through the exchange of thiol disulfide bonds and the formation of hydrogen or hydrophobic bonds with other proteins.  相似文献   

20.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号