首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.  相似文献   

2.
You C  Han C  Wang X  Zheng Y  Li Q  Hu X  Sun H 《Molecular biology reports》2012,39(9):9193-9201
Nanotechnology is a highly promising field, with nanoparticles produced and utilized in a wide range of commercial products. Silver nanoparticles (AgNPs) has been widely used in clothing, electronics, bio-sensing, the food industry, paints, sunscreens, cosmetics and medical devices, all of which increase human exposure and thus the potential risk related to their short- and long-term toxicity. Many studies indicate that AgNPs are toxic to human health. Interestingly, the majority of these studies focus on the interaction of the nano-silver particle with single cells, indicating that AgNPs have the potential to induce the genes associated with cell cycle progression, DNA damage and mitochondrial associated apoptosis. AgNPs administered through any method were subsequently detected in blood and were found to cause deposition in several organs. There are very few studies in rats and mice involving the in vivo bio-distribution and toxicity, organ accumulation and degradation, and the possible adverse effects and toxicity in vivo are only slowly being recognized. In the present review, we summarize the current data associated with the increased medical usage of nano-silver and its related nano-materials, compare the mechanism of antibiosis and discuss the proper application of nano-silver particles.  相似文献   

3.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   

4.
Stem cell tissue constructs are likely to come into contact with silver-based nanoparticles—such as silver chloride nanoparticles (AgCl–NPs)—used as microbicidals at the implant site or in cosmetics. However, the effect of silver-based nanoparticles on 3D cell cultures with potential for tissue engineering has received little attention. Here, we examined the effect of sub-lethal doses (5, 10 and 25 µg/mL, for 1, 7 and 21 days) of AgCl–NPs produced by ‘green’ bacterial-based synthesis on spheroid 3D cultures of human adipose tissue stem cells (ASCs). Light microscopy analysis revealed that the shape and diameter of ASC spheroids remained largely unchanged after AgCl–NP treatment. Flow cytometry analysis with 7-AAD and 2′,7′-dichlorofluorescein diacetate revealed no statistically significant differences in cell death but showed an increase of ROS levels for the untreated group and significant differences for the groups treated with 5 and 10 µg/mL at day 7 (p?=?0.0395, p?=?0.0266, respectively). Electron microscopy analysis showed limited cell damage in the periphery of AgCl–NP-treated spheroids. However, treatment with AgCl–NP had statistically significant effects on the secretion of IL-6, IL-8, IL-1β and IL-10 by spheroids, at specific treatment periods and concentrations, and particularly for IL-6, IL-8 and IL-1β. TGF-β1 and -β2 secretion also changed significantly throughout the treatment period. Our results indicate that, despite having little effect on cell viability and morphology, sub-lethal AgCL–NP doses modulate ROS production at day 7 for the groups treated with 5 and 10 µg/mL and also modulate the secretory profile of ASC spheroids. Thus, the use of skin implants or products containing Ag-NPs may promote long-term disturbances in subcutaneous adipose tissue homeostasis.  相似文献   

5.
Drug delivery systems are designed to improve therapy efficacy as well as patient compliance. This could be accomplished by specifically targeting a medication intact to its active site, therefore reducing side-effects and enabling high local drug concentrations. Silica nanoparticles have gained ground in the biomedical field for their biocompatibility and biodegradability, being themselves inert and stable, thus enabling a variety of formulation designs for application in the pharmaceutical industry. This paper is a review of the recent patents on the applications of silica nanoparticles for drug delivery and their preparation. The review will focus on the different techniques available to obtain silica nanoparticles with variable morphology and their drug targeting applications, providing an overview of silica particles synthesis described in the literature.  相似文献   

6.
In order to enhance the utilization of inorganic nanoparticles in biological systems, it is important to develop a fundamental understanding of the influence they have on cellular health and function. Experiments were conducted to test silica, silica/iron oxide, and gold nanoparticles for their effects on the growth and activity of Escherichia coli (E. coli). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and quantify size distribution of the nanoparticles, respectively. TEM was also used to verify the interactions between composite iron oxide nanoparticles and E. coli. The results from DLS indicated that the inorganic nanoparticles formed small aggregates in the growth media. Growth studies measured the influence of the nanoparticles on cell proliferation at various concentrations, showing that the growth of E. coli in media containing the nanoparticles indicated no overt signs of toxicity.  相似文献   

7.
Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.  相似文献   

8.
BackgroundMesoporous silica nanoparticles (MSNs) have been promising vehicles for drug delivery. Quercetin (Q), a natural flavonoid, has been reported to have many useful effects. However, poor water solubility as well as less bioavailability has confined its use as a suitable anti-cancer drug. Therefore, profound approach is required to overcome these drawbacks.MethodsWe have synthesized folic acid (FA) armed mesoporous silica nanoparticles (MSN-FA-Q) loaded with quercetin and then characterized it by DLS, SEM, TEM and FTIR. MTT, confocal microscopy, flow cytometry, scratch assay and immunoblotting were employed to assess the cell viability, cellular uptake, cell cycle arrest, apoptosis, wound healing and the expression levels of different signalling molecules in breast adenocarcinoma cells. Nanoparticle distribution was investigated by using ex vivo optical imaging and CAM assay was employed to assess tumor regression.ResultsMSN-FA-Q facilitates higher cellular uptake and allows more drug bioavailability to the breast cancer cells with over-expressed folate receptors. Our experimental results suggest that the newly synthesized MSN-FA-Q nanostructure caused cell cycle arrest and apoptosis in breast cancer cells through the regulation of Akt & Bax signalling pathways. Besides, we also observed that MSN-FA-Q has a concurrent anti-migratory role as well.ConclusionThis uniquely engineered quercetin loaded mesoporous silica nanoparticle ensures a targeted delivery with enhanced bioavailability.General significanceEffective targeted therapeutic strategy against breast cancer cells.  相似文献   

9.
Phlorotannins have received much attention due to their ecophysiological importance and potential applications in the biotechnology and food industries. Antioxidant activity studies in seaweeds have mainly focused on in vitro assays; however, there is a paucity of data regarding the effect of brown algal phlorotannins on living cultured cells. The aim of the present study was to investigate both direct and protective effects of phlorotannin-rich extracts on cell viability and the cellular oxidative status of cultured liver cells HepG2 against oxidative stress induced by tert-butyl hydroperoxide (t-BOOH). Extracts of the Phaeophyceae Ascophyllum nodosum (Fucaceae) and Himanthalia elongata (Himanthaliaceae) were submitted to gastrointestinal digestion prior to incubation for 20 h in a HepG2 culture at physiological concentrations (0.5–50 μg mL?1). Various markers of cellular oxidative stress were then assessed, such as the generation of reactive oxygen species (ROS), antioxidant defences (concentration of reduced glutathione and activities of glutathione peroxidase, reductase and glutathione-S-transferase) and the levels of malondialdehyde as a marker for lipid peroxidation. The direct effect on cellular markers was assessed immediately after the incubation period, whereas for the protective effect, the incubation period was followed by a 3-h treatment with t-BOOH. The results indicated no effect on cell viability, and both extracts showed reduced levels of ROS and increased antioxidant defences in the direct treatment. Moreover, the extracts showed a significant protective effect against chemically induced oxidative stress in HepG2 cells by reducing ROS generation and enhancing antioxidant defences, hence supporting the utility of including brown algal extracts in functional food products.  相似文献   

10.
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.  相似文献   

11.
Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.  相似文献   

12.
BackgroundSilver nanoparticles (AgNP) are largely used in nanotechnological products, but the real risks for human and environment are still poorly understood if we consider the effects of mixtures of AgNP and environmental contaminants, such as non-essential metals.MethodsThe aim of the present study was to investigate the cytotoxicity and toxicological interaction of AgNP (1−4 nm, 0.36 and 3.6 μg mL−1) and cadmium (Cd, 1 and 10 μM) mixtures. The murine macrophage cell line RAW 264.7 was used as a model.ResultsEffects were observed after a few hours (4 h) on reactive oxygen species (ROS) and became more pronounced after 24 h-exposure. Cell death occurred by apoptosis, and loss of cell viability (24 h-exposure) was preceded by increases of ROS levels and DNA repair foci, but not of NO levels. Co-exposure potentiated some effects (decrease of cell viability and increase of ROS and NO levels), indicating toxicological interaction.ConclusionThese effects are important findings that must be better investigated, since the interaction of Cd with AgNP from nanoproducts may impair the function of macrophages and represent a health risk for humans.  相似文献   

13.
14.
Bcl-2 inhibits cell proliferation by delaying G0/G1 to S phase entry. We tested the hypothesis that Bcl-2 regulates S phase entry through mitochondrial pathways. Existing evidence indicates mitochondrial adenosine tri-phosphate (ATP) and reactive oxygen species (ROS) are important signals in cell survival and cell death, however, the molecular details of how these 2 processes are linked remain unknown. In this study, 2 cell lines stably expressing Bcl-2, 3T3Bcl-2 and C3HBcl-2, and vector-alone PB controls were arrested in G0/G1 phase by serum starvation and contact inhibition, and ATP and ROS were measured during re-stimulation of cell cycle entry. Both ATP and ROS levels were decreased in G0/G1 arrested cells compared with normal growing cells. In addition, ROS levels were significant lower in synchronized Bcl-2 cells than those in PB controls. After re-stimulation, ATP levels increased with time, reaching peak value 1–3 hours ahead of S phase entry for both Bcl-2 cells and PB controls. Consistent with 2 hours of S phase delay, Bcl-2 cells reached ATP peaks 2 hours later than PB control, which suggests a rise in ATP levels is required for S phase entry. To examine the role of ATP and ROS in cell cycle regulation, ATP and ROS level were changed. We observed that elevation of ATP accelerated cell cycle progression in both PB and Bcl-2 cells, and decrease of ATP and ROS to the level equivalent to Bcl-2 cells delayed S phase entry in PB cells. Our results support the hypothesis that Bcl-2 protein regulates mitochondrial metabolism to produce less ATP and ROS, which contributes to S phase entry delay in Bcl-2 cells. These findings reveal a novel mechanistic basis for understanding the link between mitochondrial metabolism and tumor-suppressive function of Bcl-2.  相似文献   

15.
16.
17.
We have studied the initial effects of adenovirus E1A expression on the retinoblastoma (RB) gene product in normal quiescent cells. Although binding of the E1A products to pRB could, in theory, make pRB phosphorylation unnecessary for cell cycle progression, we have found that the 12S wild-type E1A product is capable of inducing phosphorylation of pRB in normal quiescent cells. The induction of pRB phosphorylation correlates with E1A-mediated induction of p34cdc2 expression and kinase activity, consistent with the possibility that p34cdc2 is a pRB kinase. Expression of simian virus 40 T antigen induces similar effects. Induction of pRB phosphorylation is independent of the pRB binding activity of the E1A products; E1A domain 2 mutants do not bind detectable levels of pRB but remain competent to induce pRB phosphorylation and to activate cdc2 protein kinase expression and activity. Although the kinetics of induction are slower, domain 2 mutants induce wild-type levels of pRB phosphorylation and host cell DNA synthesis and yet fail to induce cell proliferation. These results imply that direct physical interaction between the RB and E1A products does not play a required role in the early stages of E1A-mediated cell cycle induction and that pRB phosphorylation is not, of itself, sufficient to allow quiescent cells to divide. These results suggest that the E1A products do not need to bind pRB in order to stimulate resting cells to enter the cell cycle. Indeed, a more important role of the RB binding activity of the E1A products may be to prevent dividing cells from returning to G0.  相似文献   

18.

Background

It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications. However, before these novel materials can be safely applied in a clinical setting, their biocompatibility, biodistribution and biodegradation needs to be carefully assessed.

Scope of Review

There are a number of different classes of nanoparticles that hold promise for biomedical purposes. Here, we will focus on some of the most commonly studied nanomaterials: iron oxide nanoparticles, dendrimers, mesoporous silica particles, gold nanoparticles, and carbon nanotubes.

Major Conclusions

The mechanism of cellular uptake of nanoparticles and the biodistribution depend on the physico-chemical properties of the particles and in particular on their surface characteristics. Moreover, as particles are mainly recognized and engulfed by immune cells special attention should be paid to nano–immuno interactions. It is also important to use primary cells for testing of the biocompatibility of nanoparticles, as they are closer to the in vivo situation when compared to transformed cell lines.

General Significance

Understanding the unique characteristics of engineered nanomaterials and their interactions with biological systems is key to the safe implementation of these materials in novel biomedical diagnostics and therapeutics. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

19.
20.
Silver nanoparticles (AgNP), one of the most commonly used engineered nanomaterial for biomedical and industrial applications, has shown a toxic potential to our ecosystems and humans. In this study, murine hippocampal neuronal HT22 cells were used to delineate subcellular responses and mechanisms to AgNP by assessing the response levels of caspase-3, mitochondrial oxygen consumption, reactive oxygen species (ROS), and mitochondrial membrane potential in addition to cell viability testing. Selenium, an essential trace element that has been known to carry protecting property from heavy metals, was tested for its ameliorating potential in the cells exposed to AgNP. Results showed that AgNP reduced cell viability. The toxicity was associated with mitochondrial membrane depolarization, increased accumulation of ROS, elevated mitochondrial oxygen consumption, and caspase-3 activation. Treatment with sodium selenite reduced cell death, stabilized mitochondrial membrane potential and oxygen consumption rate, and prevented accumulation of ROS and activation of caspase-3. It is concluded that AgNP induces mitochondrial stress and treatment with selenite is capable of preventing the adverse effects of AgNP on the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号