首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) has been identified as a novel CD8(+) T cell-specific autoantigen in NOD mice. This study was undertaken to identify MHC class II-specific CD4(+) T cell epitopes of IGRP. Peptides named P1, P2, P3, P4, P5, P6, and P7 were synthesized by aligning the IGRP protein amino acid sequence with peptide-binding motifs of the NOD MHC class II (I-A(g7)) molecule. Peptides P1, P2, P3, and P7 were immunogenic and induced both spontaneous and primed responses. IGRP peptides P1-, P2-, P3-, and P7-induced responses were inhibited by the addition of anti-MHC class II (I-A(g7)) Ab, confirming that the response is indeed I-A(g7) restricted. Experiments using purified CD4(+) and CD8(+) T cells from IGRP peptide-primed mice also showed a predominant CD4(+) T cell response with no significant activation of CD8(+) T cells. T cells from P1-, P3-, and P7-primed mice secreted both IFN-gamma and IL-10 cytokines, whereas P2-primed cells secreted only IFN-gamma. Peptides P3 and P7 prevented the development of spontaneous diabetes and delayed adoptive transfer of diabetes. Peptides P1 and P2 delayed the onset of diabetes in both these models. In summary, we have identified two I-A(g7)-restricted CD4(+) T cell epitopes of IGRP that can modulate and prevent the development of diabetes in NOD mice. These results provide the first evidence on the role of IGRP-specific, MHC class II-restricted CD4(+) T cells in disease protection and may help in the development of novel therapies for type 1 diabetes.  相似文献   

2.
Islet-specific glucose-6-phosphatase (G6Pase) catalytic subunit-related protein (IGRP) is a homolog of the catalytic subunit of G6Pase, the enzyme that catalyzes the terminal step of the gluconeogenic pathway. Its catalytic activity, however, has not been defined. Since IGRP gene expression is restricted to islets, this suggests a possible role in the regulation of islet metabolism and, hence, insulin secretion induced by metabolites. We report here a comparative analysis of the human, mouse, and rat IGRP genes. These studies aimed to identify conserved sequences that may be critical for IGRP function and that specify its restricted tissue distribution. The single copy human IGRP gene has five exons of similar length and coding sequence to the mouse IGRP gene and is located on human chromosome 2q28-32 adjacent to the myosin heavy chain 1B gene. In contrast, the rat IGRP gene does not appear to encode a protein as a result of a series of deletions and insertions in the coding sequence. Moreover, rat IGRP mRNA, unlike mouse and human IGRP mRNA, is not expressed in islets or islet-derived cell lines, an observation that was traced by fusion gene analysis to a mutation of the TATA box motif in the mouse/human IGRP promoters to TGTA in the rat sequence. The results provide a framework for the further analysis of the molecular basis for the tissue-restricted expression of the IGRP gene and the identification of key amino acid sequences that determine its biological activity.  相似文献   

3.
In liver, glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate, the final step in the gluconeogenic and glycogenolytic pathways. Mutations in the glucose-6-phosphatase catalytic subunit (G6Pase) give rise to glycogen storage disease (GSD) type 1a, which is characterized in part by hypoglycemia, growth retardation, hypertriglyceridemia, hypercholesterolemia, and hepatic glycogen accumulation. Recently, a novel G6Pase isoform was identified, designated UGRP/G6Pase-beta. The activity of UGRP relative to G6Pase in vitro is disputed, raising the question as to whether G6P is a physiologically important substrate for this protein. To address this issue we have characterized the phenotype of UGRP knock-out mice. G6P hydrolytic activity was decreased by approximately 50% in homogenates of UGRP(-/-) mouse brain relative to wild type tissue, consistent with the ability of UGRP to hydrolyze G6P. In addition, female, but not male, UGRP(-/-) mice exhibit growth retardation as do G6Pase(-/-) mice and patients with GSD type 1a. However, in contrast to G6Pase(-/-) mice and patients with GSD type 1a, UGRP(-/-) mice exhibit no change in hepatic glycogen content, blood glucose, or triglyceride levels. Although UGRP(-/-) mice are not hypoglycemic, female UGRP(-/-) mice have elevated ( approximately 60%) plasma glucagon and reduced ( approximately 20%) plasma cholesterol. We hypothesize that the hyperglucagonemia prevents hypoglycemia and that the hypocholesterolemia is secondary to the hyperglucagonemia. As such, the phenotype of UGRP(-/-) mice is mild, indicating that G6Pase is the major glucose-6-phosphatase of physiological importance for glucose homeostasis in vivo.  相似文献   

4.
5.
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.  相似文献   

6.
To determine the cytochemical localization of glucose-6-phosphatase in the human hepatocyte, lead - based and cerium - based media were used. By studying the effects of systematic variation of the incubation medium components, the optimal experimental conditions were determined. The exclusive localization of the cytochemical reaction in the endoplasmic reticulum and nuclear envelope, together with the results of control experiments ensured that these findings could be correlated with the phosphohydrolase activity of the multicomponent glucose-6-phosphatase system.  相似文献   

7.
For many years the heterogeneity of CD4+ T-helper (Th) cells has been limited to Th1 and Th2 cells, which have been considered not only to be responsible for different types of protective responses, but also for the pathogenesis of many disorders. Th1 cells are indeed protective against intracellular microbes and they are thought to play a pathogenic role in organ-specific autoimmune and other chronic inflammatory disorders. Th2 cells provide protection against helminths, but are also responsible for the pathogenesis of allergic diseases. The identification and cloning of new cytokines has allowed one to enlarge the series of functional subsets of CD4+ Th effector cells. In particular, CD4+ Th cells producing IL-17 and IL-22, named Th17, have been initially implicated in the pathogenesis of many chronic inflammatory disorders instead of Th1 cells. However, the more recent studies in both humans and mice suggest that Th17 cells exhibit a high plasticity toward Th1 cells and that both Th17 and Th1 cells may be pathogenic. More recently, another two subsets of effector CD4+ Th cells, named Th9 and Th22 cells, have been described, even if their pathophysiological meaning is still unclear. Despite the heterogeneity of CD4+ effector Th cells being higher than previously thought and some of their subsets exhibiting high plasticity, the Th1/Th2 paradigm still maintains a strong validity.  相似文献   

8.
CXCR1+CD4+ T cells in human allergic disease   总被引:3,自引:0,他引:3  
Chemokine receptors play an important role in the migration of leukocytes to sites of allergic inflammation in humans. In this study, we have identified increased expression of the chemokine receptor CXCR1 on CD4+ T lymphocytes derived from patients with atopic disease compared with normal donors. Enhanced expression of CXCR1 by atopic donors was identified on freshly isolated peripheral blood cells and on expanded cell populations derived from nasal mucosal biopsies and from the periphery. Identification of CXCR1 expression on CD4 cells in the nasal mucosa was confirmed by double immunofluorescence. In addition, expression of CXCR1 was dramatically decreased in patients undergoing successful treatment of allergic rhinitis by specific immunotherapy. CXCR1 provided a functional receptor capable of regulating T cells in the context of allergic disease, since expression of CXC chemokine ligand 8 was up-regulated at the site of allergic inflammation and freshly isolated CXCR1+CD4+ cells from atopic donors showed an enhanced functional response to this ligand. CXCR1 expression on CD4+ T cells was increased in vitro in response to the pro-Th2 cytokine IL-4. Phenotypic analysis reveals that IFN-gamma expression was lower in the CXCR1+CD4+ cells. The identification of CXCR1 as a marker of allergic rhinitis reveals a possible target for therapeutic intervention in atopic disease.  相似文献   

9.
The objective of our study was to determine the cellular localisation of glucose-6-phosphatase in developing human kidney using monospecific antiserum and a standard immunohistochemical method (peroxidase-antiperoxidase, PAP) on formalin fixed and paraffin embedded tissue. In embryonic and early fetal development of the metanephric kidney, glucose-6-phosphatase is located primarily in derivatives of the ureteric bud such as the pelvis, calyxes and collecting ducts. In mid-fetal life as nephrons evolve and develop they become increasingly immunoreactive to glucose-6-phosphatase, such that in mature metanephric kidney the proximal tubules are highly reactive for glucose-6-phosphatase with other elements of the nephron also immunopositive albeit at lower reactivities. In addition the parietal layer of Bowman's capsule and some cells of the visceral layer are immunopositive. Only with the development of nephrons does the early predominance of glucose-6-phosphatase immunoreactivity to ureteric bud derivatives change: in mature kidney the reactivity in the collecting ducts is a small proportion of the total. In proximal tubular cells the distribution of glucose-6-phosphatase immunoreactivity is relatively uniform throughout development in contrast to collecting ducts where in fetal life this reactivity is displaced to the apices and basal areas by intracellular glycogen deposits. The mesonephric kidney has a similar pattern of glucose-6-phosphatase immunoreactivity to that of metanephric kidney. The availability of monospecific antiserum to glucose-6-phosphatase and immunohistochemical methods now allows an alternative approach to cellular localisation. Many of the difficulties in the fixation of tissue and assay of glucose-6-phosphatase activity inherent in conventional histochemical methods are avoided by such methods.  相似文献   

10.
11.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

12.
To obtain insight regarding the mechanism(s) of response of the catalytic unit of glucose-6-phosphatase (D-glucose-6-P phosphohydrolase; EC 3.1.3.9) to glucocorticoid administration and insulin deprivation, the functional enzyme concentration E0 was estimated from presteady-state kinetics by the stopped-flow technique. The E0 values were compared with Vmax values determined by the steady-state kinetic approach. Studies were carried out with detergent-disrupted microsomes from livers of normal fed, 48-h fasted, streptozotocin-diabetic, and triamcinolone-treated rats. All of the treatments caused an increase in E0, but Vmax values were increased only in fasting and diabetes. Km values were unaffected by all the treatments. The increase in Vmax observed with fasted and diabetic rats was explained by an increase in E0 alone. These results showed that insulin deprivation resulted in an increased formation of fully active glucose-6-phosphatase catalytic unit. In contrast, administration of triamcinolone caused an increase in E0 but not in Vmax. It was concluded that glucocorticoid administration may promote formation of catalytic units of glucose-6-phosphatase which are less active than the enzyme normally present or formed in response to insulin deprivation.  相似文献   

13.
A novel class of N,N-dibenzyl-N'-benzylidenehydrazines as potent and competitive glucose-6-phosphatase catalytic site inhibitors are described. Optimisation of this series identified compounds with IC(50) values as low as 170 nM.  相似文献   

14.
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.  相似文献   

15.
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.  相似文献   

16.
The study of G6Pase and GK activities in human liver (needle biopsies) in overnight fasted obese NIDDM patients has shown that, while G6Pase was unchanged, GK was higher (+ 55%, P less than 0.05) than in control subjects. Consequently, the G6Pase/GK ratio (which roughly reflects hepatic glucose production) was significantly reduced (-36%) in the obese diabetic group, due to more GK activity (glucose uptake). This contrasts with the activity in IDDM and nonobese NIDDM patients (where the G6Pase/GK ratio is elevated and normal, respectively) and would suggest that in the obese diabetic subjects, hepatic glucose production is not a major factor contributing to the maintenance of hyperglycemia in the overnight fasting state (leaving peripheral insulin resistance as the major cause of hyperglycemia).  相似文献   

17.
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.  相似文献   

18.
It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.  相似文献   

19.
Glucose-6-phosphatase, an enzyme of the microsomal fraction, is a major intermediate in the mobilization of glucose from liver cells. Lack of a purified preparation of this enzyme has hampered efforts to understand the molecular details of Glycogen Storage Disease Type Ia (von Gierke's disease). The present study was undertaken to purify this membrane-bound enzyme from human placenta and liver using Sepharose affinity chromatography with glucose-6-phosphate as the bound ligand. Of the two tissues tested, the placenta gave the better results, perhaps because the purification began with fresh tissue. Protein eluting from the affinity column for a placental preparation gave three peaks of specific activity representing 45-, 33-, and 600-fold purification with a yield of about 2%. Specific activity determined for liver tissue was far more variable and represented a purification of about 5-fold. SDS-PAGE of protein from both tissues indicated only three bands in the range of 58–64,000 molecular weight. Although not purified to homogeneity, the scheme reported here represents a significant advance in the purification of functional G6Pase from human sources.  相似文献   

20.
Glucose-6-phosphatase (G6Pase) activity, with glucose-6-phosphate and mannose-6-phosphate as substrates, was examined by cytochemistry in capillary and arteriole endothelial cells of the mouse brain. G6Pase activity was observed ultrastructurally in the lumen of the nuclear envelope and endoplasmic reticulum (ER) of these cells. The reactive ER and nuclear membrane appeared to be in continuity. Nucleoside diphosphatase activity, also a marker for the ER in some cell types, was not seen within the ER of the cerebral microvasculature. The ER of arterioles and capillaries did not bind lead nonspecifically when incubated in a substrate-free medium. Speculation is raised concerning the involvement of G6Pase in glucose metabolism of cerebral endothelial cells and in making blood-borne glucose available to brain parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号